Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Elife ; 112022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35880860

RESUMEN

Serial-section electron microscopy (ssEM) is the method of choice for studying macroscopic biological samples at extremely high resolution in three dimensions. In the nervous system, nanometer-scale images are necessary to reconstruct dense neural wiring diagrams in the brain, so -called connectomes. The data that can comprise of up to 108 individual EM images must be assembled into a volume, requiring seamless 2D registration from physical section followed by 3D alignment of the stitched sections. The high throughput of ssEM necessitates 2D stitching to be done at the pace of imaging, which currently produces tens of terabytes per day. To achieve this, we present a modular volume assembly software pipeline ASAP (Assembly Stitching and Alignment Pipeline) that is scalable to datasets containing petabytes of data and parallelized to work in a distributed computational environment. The pipeline is built on top of the Render Trautman and Saalfeld (2019) services used in the volume assembly of the brain of adult Drosophila melanogaster (Zheng et al. 2018). It achieves high throughput by operating only on image meta-data and transformations. ASAP is modular, allowing for easy incorporation of new algorithms without significant changes in the workflow. The entire software pipeline includes a complete set of tools for stitching, automated quality control, 3D section alignment, and final rendering of the assembled volume to disk. ASAP has been deployed for continuous stitching of several large-scale datasets of the mouse visual cortex and human brain samples including one cubic millimeter of mouse visual cortex (Yin et al. 2020); Microns Consortium et al. (2021) at speeds that exceed imaging. The pipeline also has multi-channel processing capabilities and can be applied to fluorescence and multi-modal datasets like array tomography.


Asunto(s)
Algoritmos , Drosophila melanogaster , Animales , Encéfalo , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Ratones , Microscopía Electrónica , Programas Informáticos
2.
Comput Math Methods Med ; 2018: 9034543, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30728850

RESUMEN

Our objective was to determine if there are any distinguishable phase cone clustering patterns present near to epileptic spikes. These phase cones arise from episodic phase shifts due to the coordinated activity of cortical neurons at or near to state transitions and can be extracted from the high-density scalp EEG recordings. The phase cone clustering activities in the low gamma band (30-50 Hz) and in the ripple band (80-150 Hz) were extracted from the analytic phase after taking Hilbert transform of the 256-channel high density (dEEG) data of adult patients. We used three subjects in this study. Spatiotemporal contour plots of the unwrapped analytic phase with 1.0 ms intervals were constructed using a montage layout of 256 electrode positions. Stable phase cone patterns were selected based on the criteria that the sign of the spatial gradient did not change for at least three consecutive time samples and the frame velocity was within the range of propagation velocities of cortical axons. These plots exhibited dynamical formation of phase cones which were higher in the seizure area as compared with the nearby surrounding brain areas. Spatiotemporal oscillatory patterns were also visible during ±5 sec period from the location of the spike. These results suggest that the phase cone activity might be useful for noninvasive localization of epileptic sites and also for examining the cortical neurodynamics near to epileptic spikes.


Asunto(s)
Electroencefalografía/métodos , Epilepsia/diagnóstico , Epilepsia/fisiopatología , Potenciales de Acción , Adulto , Mapeo Encefálico , Análisis por Conglomerados , Interpretación Estadística de Datos , Diagnóstico por Computador , Electrodos , Electroencefalografía/instrumentación , Electroencefalografía/estadística & datos numéricos , Femenino , Ritmo Gamma , Humanos , Masculino , Cuero Cabelludo , Convulsiones/diagnóstico , Convulsiones/fisiopatología , Procesamiento de Señales Asistido por Computador , Análisis Espacio-Temporal , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA