RESUMEN
The mitochondrial permeability transition pore is a recognized drug target for neurodegenerative conditions such as multiple sclerosis and for ischemia-reperfusion injury in the brain and heart. The peptidylprolyl isomerase, cyclophilin D (CypD, PPIF), is a positive regulator of the pore, and genetic down-regulation or knock-out improves outcomes in disease models. Current inhibitors of peptidylprolyl isomerases show no selectivity between the tightly conserved cyclophilin paralogs and exhibit significant off-target effects, immunosuppression, and toxicity. We therefore designed and synthesized a new mitochondrially targeted CypD inhibitor, JW47, using a quinolinium cation tethered to cyclosporine. X-ray analysis was used to validate the design concept, and biological evaluation revealed selective cellular inhibition of CypD and the permeability transition pore with reduced cellular toxicity compared with cyclosporine. In an experimental autoimmune encephalomyelitis disease model of neurodegeneration in multiple sclerosis, JW47 demonstrated significant protection of axons and improved motor assessments with minimal immunosuppression. These findings suggest that selective CypD inhibition may represent a viable therapeutic strategy for MS and identify quinolinium as a mitochondrial targeting group for in vivo use.
Asunto(s)
Corteza Cerebral/efectos de los fármacos , Ciclofilinas/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/antagonistas & inhibidores , Esclerosis Múltiple/prevención & control , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Compuestos de Quinolinio/uso terapéutico , Sustitución de Aminoácidos , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/inmunología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Peptidil-Prolil Isomerasa F , Ciclofilinas/genética , Ciclofilinas/metabolismo , Ciclosporinas/efectos adversos , Ciclosporinas/síntesis química , Ciclosporinas/farmacología , Ciclosporinas/uso terapéutico , Células Hep G2 , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Endogámicos , Ratones Noqueados , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Mutación , Neuronas/inmunología , Neuronas/metabolismo , Neuronas/patología , Fármacos Neuroprotectores/efectos adversos , Fármacos Neuroprotectores/farmacología , Péptidos Cíclicos/efectos adversos , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/uso terapéutico , Compuestos de Quinolinio/efectos adversos , Compuestos de Quinolinio/síntesis química , Compuestos de Quinolinio/farmacología , Distribución Aleatoria , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/patologíaRESUMEN
The functions of non-coding regulatory elements (NCREs), which constitute a major fraction of the human genome, have not been systematically studied. Here we report a method involving libraries of paired single-guide RNAs targeting both ends of an NCRE as a screening system for the Cas9-mediated deletion of thousands of NCREs genome-wide to study their functions in distinct biological contexts. By using K562 and 293T cell lines and human embryonic stem cells, we show that NCREs can have redundant functions, and that many ultra-conserved elements have silencer activity and play essential roles in cell growth and in cellular responses to drugs (notably, the ultra-conserved element PAX6_Tarzan may be critical for heart development, as removing it from human embryonic stem cells led to defects in cardiomyocyte differentiation). The high-throughput screen, which is compatible with single-cell sequencing, may allow for the identification of druggable NCREs.
Asunto(s)
Sistemas CRISPR-Cas , ARN Guía de Sistemas CRISPR-Cas , Humanos , ARN Guía de Sistemas CRISPR-Cas/genética , Células K562 , Sistemas CRISPR-Cas/genética , Células HEK293 , Genoma Humano/genética , Diferenciación Celular/genética , Miocitos Cardíacos/metabolismo , ARN no Traducido/genética , Células Madre Embrionarias Humanas/metabolismo , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , Biblioteca de GenesRESUMEN
The embryo instructs the allocation of cell states to spatially regulate functions. In the blastocyst, patterning of trophoblast (TR) cells ensures successful implantation and placental development. Here, we defined an optimal set of molecules secreted by the epiblast (inducers) that captures in vitro stable, highly self-renewing mouse trophectoderm stem cells (TESCs) resembling the blastocyst stage. When exposed to suboptimal inducers, these stem cells fluctuate to form interconvertible subpopulations with reduced self-renewal and facilitated differentiation, resembling peri-implantation cells, known as TR stem cells (TSCs). TESCs have enhanced capacity to form blastoids that implant more efficiently in utero due to inducers maintaining not only local TR proliferation and self-renewal, but also WNT6/7B secretion that stimulates uterine decidualization. Overall, the epiblast maintains sustained growth and decidualization potential of abutting TR cells, while, as known, distancing imposed by the blastocyst cavity differentiates TR cells for uterus adhesion, thus patterning the essential functions of implantation.