Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35062382

RESUMEN

Social distancing is crucial to restrain the spread of diseases such as COVID-19, but complete adherence to safety guidelines is not guaranteed. Monitoring social distancing through mass surveillance is paramount to develop appropriate mitigation plans and exit strategies. Nevertheless, it is a labor-intensive task that is prone to human error and tainted with plausible breaches of privacy. This paper presents a privacy-preserving adaptive social distance estimation and crowd monitoring solution for camera surveillance systems. We develop a novel person localization strategy through pose estimation, build a privacy-preserving adaptive smoothing and tracking model to mitigate occlusions and noisy/missing measurements, compute inter-personal distances in the real-world coordinates, detect social distance infractions, and identify overcrowded regions in a scene. Performance evaluation is carried out by testing the system's ability in person detection, localization, density estimation, anomaly recognition, and high-risk areas identification. We compare the proposed system to the latest techniques and examine the performance gain delivered by the localization and smoothing/tracking algorithms. Experimental results indicate a considerable improvement, across different metrics, when utilizing the developed system. In addition, they show its potential and functionality for applications other than social distancing.


Asunto(s)
COVID-19 , Distanciamiento Físico , Algoritmos , Aglomeración , Humanos , SARS-CoV-2
2.
Sensors (Basel) ; 22(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35590859

RESUMEN

The electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) signals, highly non-stationary in nature, greatly suffers from motion artifacts while recorded using wearable sensors. Since successful detection of various neurological and neuromuscular disorders is greatly dependent upon clean EEG and fNIRS signals, it is a matter of utmost importance to remove/reduce motion artifacts from EEG and fNIRS signals using reliable and robust methods. In this regard, this paper proposes two robust methods: (i) Wavelet packet decomposition (WPD) and (ii) WPD in combination with canonical correlation analysis (WPD-CCA), for motion artifact correction from single-channel EEG and fNIRS signals. The efficacy of these proposed techniques is tested using a benchmark dataset and the performance of the proposed methods is measured using two well-established performance matrices: (i) difference in the signal to noise ratio ( ) and (ii) percentage reduction in motion artifacts ( ). The proposed WPD-based single-stage motion artifacts correction technique produces the highest average (29.44 dB) when db2 wavelet packet is incorporated whereas the greatest average (53.48%) is obtained using db1 wavelet packet for all the available 23 EEG recordings. Our proposed two-stage motion artifacts correction technique, i.e., the WPD-CCA method utilizing db1 wavelet packet has shown the best denoising performance producing an average and values of 30.76 dB and 59.51%, respectively, for all the EEG recordings. On the other hand, for the available 16 fNIRS recordings, the two-stage motion artifacts removal technique, i.e., WPD-CCA has produced the best average (16.55 dB, utilizing db1 wavelet packet) and largest average (41.40%, using fk8 wavelet packet). The highest average and using single-stage artifacts removal techniques (WPD) are found as 16.11 dB and 26.40%, respectively, for all the fNIRS signals using fk4 wavelet packet. In both EEG and fNIRS modalities, the percentage reduction in motion artifacts increases by 11.28% and 56.82%, respectively when two-stage WPD-CCA techniques are employed in comparison with the single-stage WPD method. In addition, the average also increases when WPD-CCA techniques are used instead of single-stage WPD for both EEG and fNIRS signals. The increment in both and values is a clear indication that two-stage WPD-CCA performs relatively better compared to single-stage WPD. The results reported using the proposed methods outperform most of the existing state-of-the-art techniques.


Asunto(s)
Artefactos , Análisis de Correlación Canónica , Algoritmos , Electroencefalografía/métodos , Movimiento (Física) , Procesamiento de Señales Asistido por Computador , Análisis de Ondículas
3.
Sensors (Basel) ; 22(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35591196

RESUMEN

Diabetic neuropathy (DN) is one of the prevalent forms of neuropathy that involves alterations in biomechanical changes in the human gait. Diabetic foot ulceration (DFU) is one of the pervasive types of complications that arise due to DN. In the literature, for the last 50 years, researchers have been trying to observe the biomechanical changes due to DN and DFU by studying muscle electromyography (EMG) and ground reaction forces (GRF). However, the literature is contradictory. In such a scenario, we propose using Machine learning techniques to identify DN and DFU patients by using EMG and GRF data. We collected a dataset from the literature which involves three patient groups: Control (n = 6), DN (n = 6), and previous history of DFU (n = 9) and collected three lower limb muscles EMG (tibialis anterior (TA), vastus lateralis (VL), gastrocnemius lateralis (GL)), and three GRF components (GRFx, GRFy, and GRFz). Raw EMG and GRF signals were preprocessed, and different feature extraction techniques were applied to extract the best features from the signals. The extracted feature list was ranked using four different feature ranking techniques, and highly correlated features were removed. In this study, we considered different combinations of muscles and GRF components to find the best performing feature list for the identification of DN and DFU. We trained eight different conventional ML models: Discriminant analysis classifier (DAC), Ensemble classification model (ECM), Kernel classification model (KCM), k-nearest neighbor model (KNN), Linear classification model (LCM), Naive Bayes classifier (NBC), Support vector machine classifier (SVM), and Binary decision classification tree (BDC), to find the best-performing algorithm and optimized that model. We trained the optimized the ML algorithm for different combinations of muscles and GRF component features, and the performance matrix was evaluated. Our study found the KNN algorithm performed well in identifying DN and DFU, and we optimized it before training. We found the best accuracy of 96.18% for EMG analysis using the top 22 features from the chi-square feature ranking technique for features from GL and VL muscles combined. In the GRF analysis, the model showed 98.68% accuracy using the top 7 features from the Feature selection using neighborhood component analysis for the feature combinations from the GRFx-GRFz signal. In conclusion, our study has shown a potential solution for ML application in DN and DFU patient identification using EMG and GRF parameters. With careful signal preprocessing with strategic feature extraction from the biomechanical parameters, optimization of the ML model can provide a potential solution in the diagnosis and stratification of DN and DFU patients from the EMG and GRF signals.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Neuropatías Diabéticas , Algoritmos , Teorema de Bayes , Pie Diabético/diagnóstico , Neuropatías Diabéticas/diagnóstico , Electromiografía/métodos , Marcha/fisiología , Humanos , Aprendizaje Automático , Máquina de Vectores de Soporte
4.
Sensors (Basel) ; 22(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35684870

RESUMEN

Diabetes mellitus (DM) is one of the most prevalent diseases in the world, and is correlated to a high index of mortality. One of its major complications is diabetic foot, leading to plantar ulcers, amputation, and death. Several studies report that a thermogram helps to detect changes in the plantar temperature of the foot, which may lead to a higher risk of ulceration. However, in diabetic patients, the distribution of plantar temperature does not follow a standard pattern, thereby making it difficult to quantify the changes. The abnormal temperature distribution in infrared (IR) foot thermogram images can be used for the early detection of diabetic foot before ulceration to avoid complications. There is no machine learning-based technique reported in the literature to classify these thermograms based on the severity of diabetic foot complications. This paper uses an available labeled diabetic thermogram dataset and uses the k-mean clustering technique to cluster the severity risk of diabetic foot ulcers using an unsupervised approach. Using the plantar foot temperature, the new clustered dataset is verified by expert medical doctors in terms of risk for the development of foot ulcers. The newly labeled dataset is then investigated in terms of robustness to be classified by any machine learning network. Classical machine learning algorithms with feature engineering and a convolutional neural network (CNN) with image-enhancement techniques are investigated to provide the best-performing network in classifying thermograms based on severity. It is found that the popular VGG 19 CNN model shows an accuracy, precision, sensitivity, F1-score, and specificity of 95.08%, 95.08%, 95.09%, 95.08%, and 97.2%, respectively, in the stratification of severity. A stacking classifier is proposed using extracted features of the thermogram, which is created using the trained gradient boost classifier, XGBoost classifier, and random forest classifier. This provides a comparable performance of 94.47%, 94.45%, 94.47%, 94.43%, and 93.25% for accuracy, precision, sensitivity, F1-score, and specificity, respectively.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Algoritmos , Pie Diabético/diagnóstico por imagen , Humanos , Aprendizaje Automático , Redes Neurales de la Computación , Termografía/métodos
5.
Sensors (Basel) ; 22(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36236697

RESUMEN

An intelligent insole system may monitor the individual's foot pressure and temperature in real-time from the comfort of their home, which can help capture foot problems in their earliest stages. Constant monitoring for foot complications is essential to avoid potentially devastating outcomes from common diseases such as diabetes mellitus. Inspired by those goals, the authors of this work propose a full design for a wearable insole that can detect both plantar pressure and temperature using off-the-shelf sensors. The design provides details of specific temperature and pressure sensors, circuit configuration for characterizing the sensors, and design considerations for creating a small system with suitable electronics. The procedure also details how, using a low-power communication protocol, data about the individuals' foot pressure and temperatures may be sent wirelessly to a centralized device for storage. This research may aid in the creation of an affordable, practical, and portable foot monitoring system for patients. The solution can be used for continuous, at-home monitoring of foot problems through pressure patterns and temperature differences between the two feet. The generated maps can be used for early detection of diabetic foot complication with the help of artificial intelligence.


Asunto(s)
Inteligencia Artificial , Pie Diabético , Pie Diabético/diagnóstico , Humanos , Presión , Zapatos , Temperatura
6.
Sensors (Basel) ; 20(14)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679779

RESUMEN

In the 34 developed and 156 developing countries, there are ~132 million disabled people who need a wheelchair, constituting 1.86% of the world population. Moreover, there are millions of people suffering from diseases related to motor disabilities, which cause inability to produce controlled movement in any of the limbs or even head. This paper proposes a system to aid people with motor disabilities by restoring their ability to move effectively and effortlessly without having to rely on others utilizing an eye-controlled electric wheelchair. The system input is images of the user's eye that are processed to estimate the gaze direction and the wheelchair was moved accordingly. To accomplish such a feat, four user-specific methods were developed, implemented, and tested; all of which were based on a benchmark database created by the authors. The first three techniques were automatic, employ correlation, and were variants of template matching, whereas the last one uses convolutional neural networks (CNNs). Different metrics to quantitatively evaluate the performance of each algorithm in terms of accuracy and latency were computed and overall comparison is presented. CNN exhibited the best performance (i.e., 99.3% classification accuracy), and thus it was the model of choice for the gaze estimator, which commands the wheelchair motion. The system was evaluated carefully on eight subjects achieving 99% accuracy in changing illumination conditions outdoor and indoor. This required modifying a motorized wheelchair to adapt it to the predictions output by the gaze estimation algorithm. The wheelchair control can bypass any decision made by the gaze estimator and immediately halt its motion with the help of an array of proximity sensors, if the measured distance goes below a well-defined safety margin. This work not only empowers any immobile wheelchair user, but also provides low-cost tools for the organization assisting wheelchair users.


Asunto(s)
Personas con Discapacidad , Tecnología de Seguimiento Ocular , Silla de Ruedas , Algoritmos , Humanos , Redes Neurales de la Computación
7.
J Biomed Inform ; 49: 16-31, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24566194

RESUMEN

This paper presents a novel systematic approach for patient-specific classification of long-term Electroencephalography (EEG). The goal is to extract the seizure sections with a high accuracy to ease the Neurologist's burden of inspecting such long-term EEG data. We aim to achieve this using the minimum feedback from the Neurologist. To accomplish this, we use the majority of the state-of-the-art features proposed in this domain for evolving a collective network of binary classifiers (CNBC) using multi-dimensional particle swarm optimization (MD PSO). Multiple CNBCs are then used to form a CNBC ensemble (CNBC-E), which aggregates epileptic seizure frames from the classification map of each CNBC in order to maximize the sensitivity rate. Finally, a morphological filter forms the final epileptic segments while filtering out the outliers in the form of classification noise. The proposed system is fully generic, which does not require any a priori information about the patient such as the list of relevant EEG channels. The results of the classification experiments, which are performed over the benchmark CHB-MIT scalp long-term EEG database show that the proposed system can achieve all the aforementioned objectives and exhibits a significantly superior performance compared to several other state-of-the-art methods. Using a limited training dataset that is formed by less than 2 min of seizure and 24 min of non-seizure data on the average taken from the early 25% section of the EEG record of each patient, the proposed system establishes an average sensitivity rate above 89% along with an average specificity rate above 93% over the test set.


Asunto(s)
Automatización , Electroencefalografía/clasificación , Electroencefalografía/métodos , Humanos
8.
Artículo en Inglés | MEDLINE | ID: mdl-38814777

RESUMEN

In this work, we propose a novel approach called Operational Support Estimator Networks (OSENs) for the support estimation task. Support Estimation (SE) is defined as finding the locations of non-zero elements in sparse signals. By its very nature, the mapping between the measurement and sparse signal is a non-linear operation. Traditional support estimators rely on computationally expensive iterative signal recovery techniques to achieve such non-linearity. Contrary to the convolutional layers, the proposed OSEN approach consists of operational layers that can learn such complex non-linearities without the need for deep networks. In this way, the performance of non-iterative support estimation is greatly improved. Moreover, the operational layers comprise so-called generative super neurons with non-local kernels. The kernel location for each neuron/feature map is optimized jointly for the SE task during training. We evaluate the OSENs in three different applications: i. support estimation from Compressive Sensing (CS) measurements, ii. representation-based classification, and iii. learning-aided CS reconstruction where the output of OSENs is used as prior knowledge to the CS algorithm for enhanced reconstruction. Experimental results show that the proposed approach achieves computational efficiency and outperforms competing methods, especially at low measurement rates by significant margins. The software implementation is shared at https://github.com/meteahishali/OSEN.

9.
IEEE Trans Biomed Eng ; 70(1): 205-215, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35786545

RESUMEN

OBJECTIVE: Global (inter-patient) ECG classification for arrhythmia detection over Electrocardiogram (ECG) signal is a challenging task for both humans and machines. Automating this process with utmost accuracy is, therefore, highly desirable due to the advent of wearable ECG sensors. However, even with numerous deep learning approaches proposed recently, there is still a notable gap in the performance of global and patient-specific ECG classification performance. METHODS: In this study, we propose a novel approach for inter-patient ECG classification using a compact 1D Self-ONN by exploiting morphological and timing information in heart cycles. We used 1D Self-ONN layers to automatically learn morphological representations from ECG data, enabling us to capture the shape of the ECG waveform around the R peaks. We further inject temporal features based on RR interval for timing characterization. The classification layers can thus benefit from both temporal and learned features for the final arrhythmia classification. RESULTS: Using the MIT-BIH arrhythmia benchmark database, the proposed method achieves the highest classification performance ever achieved, i.e., 99.21% precision, 99.10% recall, and 99.15% F1-score for normal (N) segments; 82.19% precision, 82.50% recall, and 82.34% F1-score for the supra-ventricular ectopic beat (SVEBs); and finally, 94.41% precision, 96.10% recall, and 95.2% F1-score for the ventricular-ectopic beats (VEBs). SIGNIFICANCE: As a pioneer application, the results show that compact and shallow 1D Self-ONNs with the feature injection can surpass all state-of-the-art deep models with a significant margin and with minimal computational complexity. CONCLUSION: This study has demonstrated that using a compact and superior network model, a global ECG classification can still be achieved with an elegant performance level even when no patient-specific information is used.


Asunto(s)
Algoritmos , Complejos Prematuros Ventriculares , Humanos , Redes Neurales de la Computación , Electrocardiografía/métodos , Bases de Datos Factuales , Frecuencia Cardíaca , Procesamiento de Señales Asistido por Computador
10.
IEEE Trans Neural Netw Learn Syst ; 34(1): 290-304, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34260360

RESUMEN

Support estimation (SE) of a sparse signal refers to finding the location indices of the nonzero elements in a sparse representation. Most of the traditional approaches dealing with SE problems are iterative algorithms based on greedy methods or optimization techniques. Indeed, a vast majority of them use sparse signal recovery (SR) techniques to obtain support sets instead of directly mapping the nonzero locations from denser measurements (e.g., compressively sensed measurements). This study proposes a novel approach for learning such a mapping from a training set. To accomplish this objective, the convolutional sparse support estimator networks (CSENs), each with a compact configuration, are designed. The proposed CSEN can be a crucial tool for the following scenarios: 1) real-time and low-cost SE can be applied in any mobile and low-power edge device for anomaly localization, simultaneous face recognition, and so on and 2) CSEN's output can directly be used as "prior information," which improves the performance of sparse SR algorithms. The results over the benchmark datasets show that state-of-the-art performance levels can be achieved by the proposed approach with a significantly reduced computational complexity.

11.
Neural Netw ; 158: 15-29, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36436302

RESUMEN

In this study, we propose a novel approach to predict the distances of the detected objects in an observed scene. The proposed approach modifies the recently proposed Convolutional Support Estimator Networks (CSENs). CSENs are designed to compute a direct mapping for the Support Estimation (SE) task in a representation-based classification problem. We further propose and demonstrate that representation-based methods (sparse or collaborative representation) can be used in well-designed regression problems especially over scarce data. To the best of our knowledge, this is the first representation-based method proposed for performing a regression task by utilizing the modified CSENs; and hence, we name this novel approach as Representation-based Regression (RbR). The initial version of CSENs has a proxy mapping stage (i.e., a coarse estimation for the support set) that is required for the input. In this study, we improve the CSEN model by proposing Compressive Learning CSEN (CL-CSEN) that has the ability to jointly optimize the so-called proxy mapping stage along with convolutional layers. The experimental evaluations using the KITTI 3D Object Detection distance estimation dataset show that the proposed method can achieve a significantly improved distance estimation performance over all competing methods. Finally, the software implementations of the methods are publicly shared at https://github.com/meteahishali/CSENDistance.


Asunto(s)
Compresión de Datos , Conocimiento , Aprendizaje , Programas Informáticos
12.
IEEE Trans Image Process ; 32: 5637-5651, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37773907

RESUMEN

The efforts in compressive sensing (CS) literature can be divided into two groups: finding a measurement matrix that preserves the compressed information at its maximum level, and finding a robust reconstruction algorithm. In the traditional CS setup, the measurement matrices are selected as random matrices, and optimization-based iterative solutions are used to recover the signals. Using random matrices when handling large or multi-dimensional signals is cumbersome especially when it comes to iterative optimizations. Recent deep learning-based solutions increase reconstruction accuracy while speeding up recovery, but jointly learning the whole measurement matrix remains challenging. For this reason, state-of-the-art deep learning CS solutions such as convolutional compressive sensing network (CSNET) use block-wise CS schemes to facilitate learning. In this work, we introduce a separable multi-linear learning of the CS matrix by representing the measurement signal as the summation of the arbitrary number of tensors. As compared to block-wise CS, tensorial learning eases blocking artifacts and improves performance, especially at low measurement rates (MRs), such as [Formula: see text]. The software implementation of the proposed network is publicly shared at https://github.com/mehmetyamac/GTSNET.

13.
IEEE Trans Neural Netw Learn Syst ; 34(11): 9363-9374, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-35344496

RESUMEN

Although numerous R-peak detectors have been proposed in the literature, their robustness and performance levels may significantly deteriorate in low-quality and noisy signals acquired from mobile electrocardiogram (ECG) sensors, such as Holter monitors. Recently, this issue has been addressed by deep 1-D convolutional neural networks (CNNs) that have achieved state-of-the-art performance levels in Holter monitors; however, they pose a high complexity level that requires special parallelized hardware setup for real-time processing. On the other hand, their performance deteriorates when a compact network configuration is used instead. This is an expected outcome as recent studies have demonstrated that the learning performance of CNNs is limited due to their strictly homogenous configuration with the sole linear neuron model. This has been addressed by operational neural networks (ONNs) with their heterogenous network configuration encapsulating neurons with various nonlinear operators. In this study, to further boost the peak detection performance along with an elegant computational efficiency, we propose 1-D Self-Organized ONNs (Self-ONNs) with generative neurons. The most crucial advantage of 1-D Self-ONNs over the ONNs is their self-organization capability that voids the need to search for the best operator set per neuron since each generative neuron has the ability to create the optimal operator during training. The experimental results over the China Physiological Signal Challenge-2020 (CPSC) dataset with more than one million ECG beats show that the proposed 1-D Self-ONNs can significantly surpass the state-of-the-art deep CNN with less computational complexity. Results demonstrate that the proposed solution achieves a 99.10% F1-score, 99.79% sensitivity, and 98.42% positive predictivity in the CPSC dataset, which is the best R-peak detection performance ever achieved.


Asunto(s)
Electrocardiografía Ambulatoria , Redes Neurales de la Computación , Electrocardiografía/métodos , China , Modelos Lineales
14.
Biosensors (Basel) ; 13(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36979514

RESUMEN

Automated brain tumor segmentation from reconstructed microwave (RMW) brain images and image classification is essential for the investigation and monitoring of the progression of brain disease. The manual detection, classification, and segmentation of tumors are extremely time-consuming but crucial tasks due to the tumor's pattern. In this paper, we propose a new lightweight segmentation model called MicrowaveSegNet (MSegNet), which segments the brain tumor, and a new classifier called the BrainImageNet (BINet) model to classify the RMW images. Initially, three hundred (300) RMW brain image samples were obtained from our sensors-based microwave brain imaging (SMBI) system to create an original dataset. Then, image preprocessing and augmentation techniques were applied to make 6000 training images per fold for a 5-fold cross-validation. Later, the MSegNet and BINet were compared to state-of-the-art segmentation and classification models to verify their performance. The MSegNet has achieved an Intersection-over-Union (IoU) and Dice score of 86.92% and 93.10%, respectively, for tumor segmentation. The BINet has achieved an accuracy, precision, recall, F1-score, and specificity of 89.33%, 88.74%, 88.67%, 88.61%, and 94.33%, respectively, for three-class classification using raw RMW images, whereas it achieved 98.33%, 98.35%, 98.33%, 98.33%, and 99.17%, respectively, for segmented RMW images. Therefore, the proposed cascaded model can be used in the SMBI system.


Asunto(s)
Neoplasias Encefálicas , Aprendizaje Profundo , Humanos , Microondas , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Neuroimagen
15.
IEEE Trans Syst Man Cybern B Cybern ; 42(4): 1169-86, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22481827

RESUMEN

Terrain classification over polarimetric synthetic aperture radar (SAR) images has been an active research field where several features and classifiers have been proposed up to date. However, some key questions, e.g., 1) how to select certain features so as to achieve highest discrimination over certain classes?, 2) how to combine them in the most effective way?, 3) which distance metric to apply?, 4) how to find the optimal classifier configuration for the classification problem in hand?, 5) how to scale/adapt the classifier if large number of classes/features are present?, and finally, 6) how to train the classifier efficiently to maximize the classification accuracy?, still remain unanswered. In this paper, we propose a collective network of (evolutionary) binary classifier (CNBC) framework to address all these problems and to achieve high classification performance. The CNBC framework adapts a "Divide and Conquer" type approach by allocating several NBCs to discriminate each class and performs evolutionary search to find the optimal BC in each NBC. In such an (incremental) evolution session, the CNBC body can further dynamically adapt itself with each new incoming class/feature set without a full-scale retraining or reconfiguration. Both visual and numerical performance evaluations of the proposed framework over two benchmark SAR images demonstrate its superiority and a significant performance gap against several major classifiers in this field.

16.
IEEE Trans Biomed Eng ; 69(5): 1788-1801, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34910628

RESUMEN

OBJECTIVE: Despitethe proliferation of numerous deep learning methods proposed for generic ECG classification and arrhythmia detection, compact systems with the real-time ability and high accuracy for classifying patient-specific ECG are still few. Particularly, the scarcity of patient-specific data poses an ultimate challenge to any classifier. Recently, compact 1D Convolutional Neural Networks (CNNs) have achieved the state-of-the-art performance level for the accurate classification of ventricular and supraventricular ectopic beats. However, several studies have demonstrated the fact that the learning performance of the conventional CNNs is limited because they are homogenous networks with a basic (linear) neuron model. In order to address this deficiency and further boost the patient-specific ECG classification performance, in this study, we propose 1D Self-organized Operational Neural Networks (1D Self-ONNs). METHODS: Due to its self-organization capability, Self-ONNs have the utmost advantage and superiority over conventional ONNs where the prior operator search within the operator set library to find the best possible set of operators is entirely avoided. RESULTS: Under AAMI recommendations and with minimal common training data used, over the entire MIT-BIH dataset 1D Self-ONNs have achieved 98% and 99.04% average accuracies, 76.6% and 93.7% average F1 scores on supra-ventricular and ventricular ectopic beat (VEB) classifications, respectively, which is the highest performance level ever reported. CONCLUSION: As the first study where 1D Self-ONNs are ever proposed for a classification task, our results over the MIT-BIH arrhythmia benchmark database demonstrate that 1D Self-ONNs can surpass 1D CNNs with a significant margin while having a similar computational complexity.


Asunto(s)
Electrocardiografía , Complejos Prematuros Ventriculares , Algoritmos , Bases de Datos Factuales , Electrocardiografía/métodos , Frecuencia Cardíaca , Humanos , Redes Neurales de la Computación , Neuronas , Procesamiento de Señales Asistido por Computador
17.
IEEE Trans Biomed Eng ; 69(12): 3572-3581, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35503842

RESUMEN

OBJECTIVE: ECG recordings often suffer from a set of artifacts with varying types, severities, and durations, and this makes an accurate diagnosis by machines or medical doctors difficult and unreliable. Numerous studies have proposed ECG denoising; however, they naturally fail to restore the actual ECG signal corrupted with such artifacts due to their simple and naive noise model. In this pilot study, we propose a novel approach for blind ECG restoration using cycle-consistent generative adversarial networks (Cycle-GANs) where the quality of the signal can be improved to a clinical level ECG regardless of the type and severity of the artifacts corrupting the signal. METHODS: To further boost the restoration performance, we propose 1D operational Cycle-GANs with the generative neuron model. RESULTS: The proposed approach has been evaluated extensively using one of the largest benchmark ECG datasets from the China Physiological Signal Challenge (CPSC-2020) with more than one million beats. Besides the quantitative and qualitative evaluations, a group of cardiologists performed medical evaluations to validate the quality and usability of the restored ECG, especially for an accurate arrhythmia diagnosis. SIGNIFICANCE: As a pioneer study in ECG restoration, the corrupted ECG signals can be restored to clinical level quality. CONCLUSION: By means of the proposed ECG restoration, the ECG diagnosis accuracy and performance can significantly improve.


Asunto(s)
Algoritmos , Electrocardiografía , Humanos , Proyectos Piloto , Artefactos , Arritmias Cardíacas/diagnóstico , Procesamiento de Señales Asistido por Computador
18.
IEEE Trans Biomed Eng ; 69(1): 119-128, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34110986

RESUMEN

OBJECTIVE: Noise and low quality of ECG signals acquired from Holter or wearable devices deteriorate the accuracy and robustness of R-peak detection algorithms. This paper presents a generic and robust system for R-peak detection in Holter ECG signals. While many proposed algorithms have successfully addressed the problem of ECG R-peak detection, there is still a notable gap in the performance of these detectors on such low-quality ECG records. METHODS: In this study, a novel implementation of the 1D Convolutional Neural Network (CNN) is used integrated with a verification model to reduce the number of false alarms. This CNN architecture consists of an encoder block and a corresponding decoder block followed by a sample-wise classification layer to construct the 1D segmentation map of R-peaks from the input ECG signal. Once the proposed model has been trained, it can solely be used to detect R-peaks possibly in a single channel ECG data stream quickly and accurately, or alternatively, such a solution can be conveniently employed for real-time monitoring on a lightweight portable device. RESULTS: The model is tested on two open-access ECG databases: The China Physiological Signal Challenge (2020) database (CPSC-DB) with more than one million beats, and the commonly used MIT-BIH Arrhythmia Database (MIT-DB). Experimental results demonstrate that the proposed systematic approach achieves 99.30% F1-score, 99.69% recall, and 98.91% precision in CPSC-DB, which is the best R-peak detection performance ever achieved. Results also demonstrate similar or better performance than most competing algorithms on MIT-DB with 99.83% F1-score, 99.85% recall, and 99.82% precision. SIGNIFICANCE: Compared to all competing methods, the proposed approach can reduce the false-positives and false-negatives in Holter ECG signals by more than 54% and 82%, respectively. CONCLUSION: Finally, the simple and invariant nature of the parameters leads to a highly generic system and therefore applicable to any ECG dataset.


Asunto(s)
Electrocardiografía , Procesamiento de Señales Asistido por Computador , Algoritmos , Arritmias Cardíacas , Electrocardiografía Ambulatoria , Humanos , Redes Neurales de la Computación
19.
Comput Intell Neurosci ; 2022: 9690940, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35510061

RESUMEN

Background: Diabetic sensorimotor polyneuropathy (DSPN) is a major form of complication that arises in long-term diabetic patients. Even though the application of machine learning (ML) in disease diagnosis is very common and well-established in the field of research, its application in DSPN diagnosis using nerve conduction studies (NCS), is very limited in the existing literature. Method: In this study, the NCS data were collected from the Diabetes Control and Complications Trial (DCCT) and its follow-up Epidemiology of Diabetes Interventions and Complications (EDIC) clinical trials. The NCS variables are median motor velocity (m/sec), median motor amplitude (mV), median motor F-wave (msec), median sensory velocity (m/sec), median sensory amplitude (µV), Peroneal Motor Velocity (m/sec), peroneal motor amplitude (mv), peroneal motor F-wave (msec), sural sensory velocity (m/sec), and sural sensory amplitude (µV). Three different feature ranking techniques were used to analyze the performance of eight different conventional classifiers. Results: The ensemble classifier outperformed other classifiers for the NCS data ranked when all the NCS features were used and provided an accuracy of 93.40%, sensitivity of 91.77%, and specificity of 98.44%. The random forest model exhibited the second-best performance using all the ten features with an accuracy of 93.26%, sensitivity of 91.95%, and specificity of 98.95%. Both ensemble and random forest showed the kappa value 0.82, which indicates that the models are in good agreement with the data and the variables used and are accurate to identify DSPN using these ML models. Conclusion: This study suggests that the ensemble classifier using all the ten NCS variables can predict the DSPN severity which can enhance the management of DSPN patients.


Asunto(s)
Diabetes Mellitus , Neuropatías Diabéticas , Polineuropatías , Algoritmos , Neuropatías Diabéticas/diagnóstico , Humanos , Aprendizaje Automático , Conducción Nerviosa/fisiología , Polineuropatías/diagnóstico
20.
Comput Biol Med ; 142: 105238, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35077938

RESUMEN

Harnessing the inherent anti-spoofing quality from electroencephalogram (EEG) signals has become a potential field of research in recent years. Although several studies have been conducted, still there are some vital challenges present in the deployment of EEG-based biometrics, which is stable and capable of handling the real-world scenario. One of the key challenges is the large signal variability of EEG when recorded on different days or sessions which impedes the performance of biometric systems significantly. To address this issue, a session invariant multimodal Self-organized Operational Neural Network (Self-ONN) based ensemble model combining EEG and keystroke dynamics is proposed in this paper. Our model is tested successfully on a large number of sessions (10 recording days) with many challenging noisy and variable environments for the identification and authentication tasks. In most of the previous studies, training and testing were performed either over a single recording session (same day) only or without ensuring appropriate splitting of the data on multiple recording days. Unlike those studies, in our work, we have rigorously split the data so that train and test sets do not share the data of the same recording day. The proposed multimodal Self-ONN based ensemble model has achieved identification accuracy of 98% in rigorous validation cases and outperformed the equivalent ensemble of deep CNN models. A novel Self-ONN Siamese network has also been proposed to measure the similarity of templates during the authentication task instead of the commonly used simple distance measure techniques. The multimodal Siamese network reduces the Equal Error Rate (EER) to 1.56% in rigorous authentication. The obtained results indicate that the proposed multimodal Self-ONN model can automatically extract session invariant unique non-linear features to identify and authenticate users with high accuracy.


Asunto(s)
Identificación Biométrica , Identificación Biométrica/métodos , Biometría , Recolección de Datos , Electroencefalografía/métodos , Redes Neurales de la Computación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA