Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nanomedicine ; 9(2): 284-92, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22841913

RESUMEN

The ability to perform cell tracking using x-ray computed tomography combined with gold nanoparticles has been demonstrated recently on ex vivo samples using different malignant and nonmalignant cell lines. Here we proved the concept of the method for in vivo assessment in a small-animal model of malignant brain tumors. The limitations of the method due to radiation dose constraints were investigated using Monte Carlo simulations. Taking into consideration different x-ray entrance doses and the spatial resolution, the visibility of the cell clusters was evaluated. The results of the experiments conducted on mice implanted with F98 tumor cells confirmed the prediction of the Monte Carlo calculations. Small clusters of cells exogenously loaded with gold nanoparticles could be visualized using our in vivo method. FROM THE CLINICAL EDITOR: This article discusses the use of CT-based detection of gold nanoparticle loaded cells of interest in small-animal models of malignant brain tumors, where small clusters of cells loaded with gold nanoparticles could be visualized.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Oro , Nanopartículas del Metal , Tomografía Computarizada por Rayos X/métodos , Animales , Línea Celular Tumoral , Oro/análisis , Masculino , Nanopartículas del Metal/análisis , Ratones , Ratones Desnudos , Método de Montecarlo , Ratas
2.
Biomed Opt Express ; 8(2): 593-607, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28270970

RESUMEN

OCT has been demonstrated as an efficient imaging modality in various biomedical and clinical applications. However, there is a missing link with respect to the source of contrast between OCT and other modern imaging modalities, no quantitative comparison has been demonstrated between them, yet. We evaluated, to our knowledge, for the first time in vivo OCT measurement of rat brain with our previously proposed forward imaging method by both qualitatively and quantitatively correlating OCT with the corresponding T1-weighted and T2-weighted magnetic resonance images, fiber density map (FDM), and two types of histology staining (cresyl violet and acetylcholinesterase AchE), respectively. Brain anatomical structures were identified and compared across OCT, MRI and histology imaging modalities. Noticeable resemblances corresponding to certain anatomical structures were found between OCT and other image profiles. Correlation was quantitatively assessed by estimating correlation coefficient (R) and mutual information (MI). Results show that the 1-D OCT measurements in regards to the intensity profile and estimated attenuation factor, do not have profound linear correlation with the other image modalities suggested from correlation coefficient estimation. However, findings in mutual information analysis demonstrate that there are markedly high MI values in OCT-MRI signals.

3.
PLoS One ; 11(2): e0147730, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26828947

RESUMEN

With the continued miniaturisation of portable embedded systems, wireless EEG recording techniques are becoming increasingly prevalent in animal behavioural research. However, in spite of their versatility and portability, they have seldom been used inside water-maze tasks designed for rats. As such, a novel 3D printed implant and waterproof connector is presented, which can facilitate wireless water-maze EEG recordings in freely-moving rats, using a commercial wireless recording system (W32; Multichannel Systems). As well as waterproofing the wireless system, battery, and electrode connector, the implant serves to reduce movement-related artefacts by redistributing movement-related forces away from the electrode connector. This implant/connector was able to successfully record high-quality LFP in the hippocampo-striatal brain regions of rats as they undertook a procedural-learning variant of the double-H water-maze task. Notably, there were no significant performance deficits through its use when compared with a control group across a number of metrics including number of errors and speed of task completion. Taken together, this method can expand the range of measurements that are currently possible in this diverse area of behavioural neuroscience, whilst paving the way for integration with more complex behaviours.


Asunto(s)
Electroencefalografía/métodos , Aprendizaje por Laberinto , Agua , Tecnología Inalámbrica , Potenciales de Acción , Animales , Artefactos , Conducta Animal , Femenino , Ratas Sprague-Dawley , Cráneo/anatomía & histología , Análisis y Desempeño de Tareas
4.
J Vis Exp ; (101): e52667, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26273794

RESUMEN

Spatial cognition research in rodents typically employs the use of maze tasks, whose attributes vary from one maze to the next. These tasks vary by their behavioral flexibility and required memory duration, the number of goals and pathways, and also the overall task complexity. A confounding feature in many of these tasks is the lack of control over the strategy employed by the rodents to reach the goal, e.g., allocentric (declarative-like) or egocentric (procedural) based strategies. The double-H maze is a novel water-escape memory task that addresses this issue, by allowing the experimenter to direct the type of strategy learned during the training period. The double-H maze is a transparent device, which consists of a central alleyway with three arms protruding on both sides, along with an escape platform submerged at the extremity of one of these arms. Rats can be trained using an allocentric strategy by alternating the start position in the maze in an unpredictable manner (see protocol 1; §4.7), thus requiring them to learn the location of the platform based on the available allothetic cues. Alternatively, an egocentric learning strategy (protocol 2; §4.8) can be employed by releasing the rats from the same position during each trial, until they learn the procedural pattern required to reach the goal. This task has been proven to allow for the formation of stable memory traces. Memory can be probed following the training period in a misleading probe trial, in which the starting position for the rats alternates. Following an egocentric learning paradigm, rats typically resort to an allocentric-based strategy, but only when their initial view on the extra-maze cues differs markedly from their original position. This task is ideally suited to explore the effects of drugs/perturbations on allocentric/egocentric memory performance, as well as the interactions between these two memory systems.


Asunto(s)
Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Animales , Escala de Evaluación de la Conducta , Cognición/efectos de los fármacos , Cognición/fisiología , Señales (Psicología) , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Muscimol/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Ratas
5.
Onco Targets Ther ; 8: 3803-15, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26719708

RESUMEN

BACKGROUND: Magnetic resonance imaging (MRI) is the standard neuroimaging method to diagnose neoplastic brain lesions, as well as to perform stereotactic biopsy surgical planning. MRI has the advantage of providing structural anatomical details with high sensitivity, though histological specificity is limited. Although combining MRI with other imaging modalities, such as positron-emission tomography (PET), has proven to increment specificity, exact correlation between PET threshold uptake ratios (URs) and histological diagnosis and grading has not yet been described. OBJECTIVES: The aim of this study was to correlate exactly the histopathological criteria of the biopsy site to its PET uptake value with high spatial resolution (mm(3)), and to analyze the diagnostic value of PET using the amino acid O-(2-[(18)F]fluoroethyl)-l-tyrosine ((18)F-FET) PET in patients with newly diagnosed brain lesions in comparison to histological findings obtained from stereotactic serial biopsy. PATIENTS AND METHODS: A total of 23 adult patients with newly diagnosed brain tumors on MRI were enrolled in this study. Subsequently to diagnoses, all patients underwent a (18)F-FET PET-guided stereotactic biopsy, using an original newly developed software module, which is presented here. Conventional MRI, stereotactic computed tomography series, and (18)F-FET PET images were semiautomatically fused, and hot-spot detection was performed for target planning. UR was determined using the uptake value from the biopsy sites in relation to the contralateral frontal white matter. UR values ≥1.6 were considered positive for glioma. High-grade glioma (HGG) was suspected with URs ≥3.0, while low-grade glioma (LGG) was suspected with URs between 1.6 and 3.0. Stereotactic serial biopsies along the trajectory at multiple sites were performed in millimeter steps, and the FET URs for each site were correlated exactly with a panel of 27 different histopathological markers. Comparisons between FET URs along the biopsy trajectories and the histological diagnoses were made with Pearson product-moment correlation coefficients. Analysis of variance was performed to test for significant differences in maximum UR between different tumor grades. RESULTS: A total of 363 biopsy specimens were taken from 23 patients by stereotactic serial biopsies. Histological examination revealed eight patients (35%) with an LGG: one with a World Health Organization (WHO)-I lesion and seven with a WHO-II lesion. Thirteen (57%) patients revealed an HGG (two with a WHO-III and three with a WHO-IV tumor), and two patients (9%) showed a process that was neither HGG nor LGG (group X or no-grade group). The correlation matrix between histological findings and the UR revealed five strong correlations. Low cell density in tissue samples was found to have a significant negative correlation with the measured cortical uptake rate (r=-0.43, P=0.02), as well as moderate cell density (r=-0.48, P=0.02). Pathological patterns of proliferation (r=0.37, P=0.04), GFAP (r=0.37, P=0.04), and Olig2 (r=0.36, P=0.05) showed a significant positive correlation with cortical URs. Analysis of variance tests showed a significant difference between the LGG and the HGG groups (F=8.27, P<0.002), but no significant differences when differentiating between the X group and the HGG (P=0.2)/LGG (P=0.8) groups, nor between the no-grade group and the WHO-I group. CONCLUSION: (18)F-FET PET is a valuable tool, as it allows the differentiation of HGGs from LGGs. Its use is not limited to preoperative evaluation; it may also refine biopsy targeting and improve tumor delimitation for radiotherapy. Histology is still necessary, and remains the gold standard for definitive diagnosis of brain lesions.

6.
Front Neuroeng ; 7: 34, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25191264

RESUMEN

In neural prosthetics and stereotactic neurosurgery, intracortical electrodes are often utilized for delivering therapeutic electrical pulses, and recording neural electrophysiological signals. Unfortunately, neuroinflammation impairs the neuron-electrode-interface by developing a compact glial encapsulation around the implants in long term. At present, analyzing this immune reaction is only feasible with post-mortem histology; currently no means for specific in vivo monitoring exist and most applicable imaging modalities can not provide information in deep brain regions. Optical coherence tomography (OCT) is a well established imaging modality for in vivo studies, providing cellular resolution and up to 1.2 mm imaging depth in brain tissue. A fiber based spectral domain OCT was shown to be capable of minimally invasive brain imaging. In the present study, we propose to use a fiber based spectral domain OCT to monitor the progression of the tissue's immune response through scar encapsulation progress in a rat animal model. A fine fiber catheter was implanted in rat brain together with a flexible polyimide microelectrode in sight both of which acts as a foreign body and induces the brain tissue immune reaction. OCT signals were collected from animals up to 12 weeks after implantation and thus gliotic scarring in vivo monitored for that time. Preliminary data showed a significant enhancement of the OCT backscattering signal during the first 3 weeks after implantation, and increased attenuation factor of the sampled tissue due to the glial scar formation.

7.
Behav Brain Res ; 239: 15-26, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23137697

RESUMEN

In Huntington's disease (HD) cognitive deficits co-exist with motor impairments, both contributing to the overall disease symptomology. Despite short-term and working memory impairments, learning and other non-motoric behavioral deficits arising from the damage to frontostriatal loop being common in HD patients, most of the experimental work with transgenic animals focuses on motor symptoms. The transgenic rat model (tgHD) recapitulates many hallmark HD-like symptoms, such as huntingtin aggregates, cellular loss and dysfunction, and motor, and some cognitive deficits. In the current study we tested tgHD rats in two different cognitive, water maze competition paradigms to learn more about the impact of the transgene on learning and memory processing using hippocampal- and striatal-based memory systems. The tgHD rats had early and robust cognitive deficits in learning and memory function in both paradigms. Specifically, the transgenic animals were impaired in task acquisition and committed more procedural errors with the strongest phenotype amongst the homozygote tgHD. Although the transgenic animals were capable of using both procedural and declarative memory, their response patterns were distinct from wild-type animals. Wide spread huntingtin aggregates were observed at 13 months, but neither PET nor autoradiography indicated neuronal loss or dysfunction in striatal dopamine receptor population. In summary, the homozygote tgHD showed a robust learning and memory impairment prior to any clear motor deficits, or striatal dysfunction. However, the data were not conclusive regarding how the memory systems were compromised and the precise nature and underlying mechanism of the cognitive deficit in the tgHD model requires further investigation.


Asunto(s)
Modelos Animales de Enfermedad , Neuroimagen Funcional/psicología , Enfermedad de Huntington/genética , Enfermedad de Huntington/psicología , Trastornos de la Memoria/genética , Trastornos de la Memoria/psicología , Animales , Glucemia/genética , Peso Corporal/genética , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/metabolismo , Femenino , Radioisótopos de Flúor , Neuroimagen Funcional/métodos , Proteína Huntingtina , Enfermedad de Huntington/complicaciones , Enfermedad de Huntington/diagnóstico por imagen , Masculino , Aprendizaje por Laberinto , Trastornos de la Memoria/complicaciones , Trastornos de la Memoria/diagnóstico por imagen , Actividad Motora/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/psicología , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Receptores de Dopamina D2/metabolismo , Salicilamidas
8.
Front Neuroeng ; 6: 6, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23898266

RESUMEN

A long term functional and reliable coupling between neural tissue and implanted microelectrodes is the key issue in acquiring neural electrophysiological signals or therapeutically excite neural tissue. The currently often used rigid micro-electrodes are thought to cause a severe foreign body reaction resulting in a thick glial scar and consequently a poor tissue-electrode coupling in the chronic phase. We hypothesize, that this adverse effect might be remedied by probes compliant to the soft brain tissue, i.e., replacing rigid electrodes by flexible ones. Unfortunately, this flexibility comes at the price of a low stiffness, which makes targeted low trauma implantation very challenging. In this study, we demonstrate an adaptable and simple method to implant extremely flexible microprobes even to deep areas of rat's brain. Implantation of flexible probes is achieved by rod supported stereotactic insertion fostered by a hydrogel (2% agarose in PBS) cushion on the exposed skull. We were thus able to implant very flexible micro-probes in 70 rats as deep as the rodent's subthalamic nucleus. This work describes in detail the procedures and steps needed for minimal invasive, but reliable implantation of flexible probes.

9.
EMBO J ; 24(19): 3504-15, 2005 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-16163386

RESUMEN

Neural stem cells (NSCs) in the postnatal mammalian brain self-renew and are a source of neurons and glia. To date, little is known about the molecular and cellular mechanisms regulating the maintenance and differentiation of these multipotent progenitors. We show that Jagged1 is required by mitotic cells in the subventricular zone (SVZ) and stimulates self-renewal of multipotent epidermal growth factor-dependent NSCs. Jagged1-expressing cells line the adult SVZ and are juxtaposed to Notch1-expressing cells, some of which are putative NSCs. In vitro, endogenous Jagged1 acts through Notch1 to promote NSC maintenance and multipotency. In vivo, reducing Jagged1/Notch1 signaling decreases the number of proliferating cells in the SVZ. In addition, soluble Jagged1 promotes self-renewal and neurogenic potential of multipotent neural progenitors in vitro. Our findings suggest a central role for Jagged1 in the NSC niche in the SVZ for maintaining a population of NSCs in the postnatal brain.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular/fisiología , Proliferación Celular , Ventrículos Laterales/citología , Proteínas de la Membrana/metabolismo , Células Madre Multipotentes/metabolismo , Transducción de Señal/fisiología , Animales , Factor de Crecimiento Epidérmico/metabolismo , Técnica del Anticuerpo Fluorescente , Péptidos y Proteínas de Señalización Intercelular , Proteína Jagged-1 , Ratones , Células Madre Multipotentes/citología , Receptor Notch1/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Serrate-Jagged
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA