Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
PLoS Genet ; 16(12): e1009226, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33284793

RESUMEN

Replication-coupled chromatin assembly is achieved by a network of alternate pathways containing different chromatin assembly factors and histone-modifying enzymes that coordinate deposition of nucleosomes at the replication fork. Here we describe the organization of a CAF-1-dependent pathway in Saccharomyces cerevisiae that regulates acetylation of histone H4 K16. We demonstrate factors that function in this CAF-1-dependent pathway are important for preventing establishment of silenced states at inappropriate genomic sites using a crippled HMR locus as a model, while factors specific to other assembly pathways do not. This CAF-1-dependent pathway required the cullin Rtt101p, but was functionally distinct from an alternate pathway involving Rtt101p-dependent ubiquitination of histone H3 and the chromatin assembly factor Rtt106p. A major implication from this work is that cells have the inherent ability to create different chromatin modification patterns during DNA replication via differential processing and deposition of histones by distinct chromatin assembly pathways within the network.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas Cullin/metabolismo , Expresión Génica Ectópica , Silenciador del Gen , Histonas/metabolismo , Ribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Cullin/genética , Replicación del ADN , Ribonucleasas/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
2.
Biochim Biophys Acta ; 1819(3-4): 303-312, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24459732

RESUMEN

Identical genes in two different cells can stably exist in alternate transcriptional states despite the dynamic changes that will occur to chromatin at that locus throughout the cell cycle. In mammals, this is achieved through epigenetic processes that regulate key developmental transitions and ensure stable patterns of gene expression during growth and differentiation. The budding yeast Saccharomyces cerevisiae utilizes silencing to control the expression state of genes encoding key regulatory factors for determining cell-type, ribosomal RNA levels and proper telomere function. Here, we review the composition of silent chromatin in S. cerevisiae, how silent chromatin is influenced by chromatin assembly and histone modifications and highlight several observations that have contributed to our understanding of the interplay between silent chromatin formation and stability and the cell cycle. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.


Asunto(s)
Ciclo Celular/fisiología , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Silenciador del Gen/fisiología , Animales , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Epigénesis Genética/fisiología , Humanos
3.
J Cell Sci ; 125(Pt 12): 2954-64, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22393239

RESUMEN

Although distinct epigenetic marks correlate with different chromatin states, how they are integrated within single nucleosomes to generate combinatorial signals remains largely unknown. We report the successful implementation of single molecule tools constituting fluorescence correlation spectroscopy (FCS), pulse interleave excitation-based Förster resonance energy transfer (PIE-FRET) and fluorescence lifetime imaging-based FRET (FLIM-FRET) to elucidate the composition of single nucleosomes containing histone variant H2A.Z (Htz1p in yeast) in vitro and in vivo. We demonstrate that yeast nucleosomes containing Htz1p are primarily composed of H4 K12ac and H3 K4me3 but not H3 K36me3 and that these patterns are conserved in mammalian cells. Quantification of epigenetic modifications in nucleosomes will provide a new dimension to epigenetics research and lead to a better understanding of how these patterns contribute to the targeting of chromatin-binding proteins and chromatin structure during gene regulation.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Histonas/metabolismo , Nucleosomas/química , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Espectrometría de Fluorescencia/métodos , Acetilación , Línea Celular , Epigénesis Genética , Epigenómica , Histonas/química , Histonas/genética , Humanos , Metilación , Nucleosomas/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
4.
J Biol Chem ; 285(45): 35142-54, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20813847

RESUMEN

In Saccharomyces cerevisiae, silent chromatin is formed at HMR upon the passage through S phase, yet neither the initiation of DNA replication at silencers nor the passage of a replication fork through HMR is required for silencing. Paradoxically, mutations in the DNA replication processivity factor, POL30, disrupt silencing despite this lack of requirement for DNA replication in the establishment of silencing. We tested whether pol30 mutants could establish silencing at either replicated or non-replicated HMR loci during S phase and found that pol30 mutants were defective in establishing silencing at HMR regardless of its replication status. Although previous studies tie the silencing defect of pol30 mutants to the chromatin assembly factors Asf1p and CAF-1, we found pol30 mutants did not exhibit a gross defect in packaging HMR into chromatin. Rather, the pol30 mutants exhibited defects in histone modifications linked to ASF1 and CAF-1-dependent pathways, including SAS-I- and Rtt109p-dependent acetylation events at H4-K16 and H3-K9 (plus H3-K56; Miller, A., Yang, B., Foster, T., and Kirchmaier, A. L. (2008) Genetics 179, 793-809). Additional experiments using FLIM-FRET revealed that Pol30p interacted with SAS-I and Rtt109p in the nuclei of living cells. However, these interactions were disrupted in pol30 mutants with defects linked to ASF1- and CAF-1-dependent pathways. Together, these results imply that Pol30p affects epigenetic processes by influencing the composition of chromosomal histone modifications.


Asunto(s)
Cromatina/metabolismo , Replicación del ADN/fisiología , ADN de Hongos/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Fase S/fisiología , Saccharomyces cerevisiae/metabolismo , Acetilación , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , ADN de Hongos/genética , Silenciador del Gen , Sitios Genéticos/fisiología , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/genética , Histonas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Antígeno Nuclear de Célula en Proliferación/genética , Ribonucleasas/genética , Ribonucleasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Genetics ; 179(2): 793-809, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18558650

RESUMEN

The formation and stability of epigenetically regulated chromatin is influenced by DNA replication and factors that modulate post-translational modifications on histones. Here we describe evidence that PCNA can affect silencing in Saccharomyces cerevisiae by facilitating deposition of H3 K56ac onto chromosomes. We propose that PCNA participates in this process through a pathway that includes replication factor C, the chromatin assembly factor Asf1p, and the K56-specific acetyltransferase Rtt109p. We show that mutation of POL30 or loss of K56-acetylation in rtt109 and histone H3 mutants enhances silencing at the crippled HMR locus HMRae via restoring Sir binding and that pol30 mutants with silencing phenotypes have reduced levels of H3 K56ac. Although loss of acetylation on H3 K56 was generally compatible with silencing, mutations at this residue also led to defects in silencing an ADE2 reporter at HMR and abolished silencing when combined with cac1 or pol30-8. These silencing phenotypes are analogous to those in asf1 mutants or pol30-6 and pol30-79 mutants with defects in ASF1-dependent pathways. On the basis of these findings, we propose that mutations in DNA replication factors alter acetylation of H3 K56. We show that this defect, in turn, contributes to misregulation of epigenetic processes as well as of cellular responses to DNA damage.


Asunto(s)
Proteínas de Ciclo Celular/genética , Histonas/genética , Antígeno Nuclear de Célula en Proliferación/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Cromatina/genética , Daño del ADN , Epigénesis Genética , Silenciador del Gen , Genes Fúngicos , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/química , Histonas/metabolismo , Lisina/química , Modelos Genéticos , Chaperonas Moleculares , Mutación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Procesamiento Proteico-Postraduccional , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/genética
7.
Mol Cell Biol ; 26(3): 852-62, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16428441

RESUMEN

The establishment of silencing at the silent mating-type locus, HMR, in Saccharomyces cerevisiae requires that yeast pass through S phase of the cell cycle, yet requires neither the initiation of DNA replication at the locus destined to become silenced nor the passage of a replication fork through that locus. We tested whether this S-phase requirement reflects a window within the cell cycle permissive for recruitment of Sir proteins to HMR. The S-phase-restricted event necessary for silencing occurred after recruitment of Sir proteins to HMR. Moreover, cells arrested in early S phase formed silent chromatin at HMR, provided HMR was on a nonreplicating template. Replicating templates required a later step for silencing. These results provide temporal resolution of discrete steps in the formation of silent chromatin and suggest that more than one cell cycle-regulated event may be necessary for the establishment of silencing.


Asunto(s)
Ciclo Celular , Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Catálisis , Replicación del ADN , Fase G1 , Genes del Tipo Sexual de los Hongos , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Mutación , Estabilidad del ARN , Fase S , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2 , Sirtuinas/genética , Sirtuinas/metabolismo
8.
Mol Biol Cell ; 17(12): 5287-97, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17035629

RESUMEN

Sir protein spreading along chromosomes and silencing in Saccharomyces cerevisiae requires the NAD+-dependent histone deacetylase activity of Sir2p. We tested whether this requirement could be bypassed at the HM loci and telomeres in cells containing a stably expressed, but catalytically inactive mutant of Sir2p, sir2-345p, plus histone mutants that mimic the hypoacetylated state normally created by Sir2p. Sir protein spreading was rescued in sir2-345 mutants expressing histones in which key lysine residues in their N-termini had been mutated to arginine. Mating in these mutants was also partially restored upon overexpression of Sir3p. Together, these results indicate that histone hypoacetylation is sufficient for Sir protein spreading in the absence of production of 2'-O-acetyl-ADP ribose by sir2p and Sir2p's enzymatic function for silencing can be bypassed in a subset of cells in a given population. These results also provide genetic evidence for the existence of additional critical substrates of Sir2p for silencing in vivo.


Asunto(s)
Histona Desacetilasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuinas/metabolismo , Catálisis , Silenciador del Gen , Histonas/metabolismo , Modelos Genéticos , Mutación/genética , Unión Proteica , Saccharomyces cerevisiae/citología , Sirtuina 2 , Telómero/metabolismo , Transcripción Genética
9.
Genetics ; 212(3): 631-654, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31123043

RESUMEN

Fumarase is a well-characterized TCA cycle enzyme that catalyzes the reversible conversion of fumarate to malate. In mammals, fumarase acts as a tumor suppressor, and loss-of-function mutations in the FH gene in hereditary leiomyomatosis and renal cell cancer result in the accumulation of intracellular fumarate-an inhibitor of α-ketoglutarate-dependent dioxygenases. Fumarase promotes DNA repair by nonhomologous end joining in mammalian cells through interaction with the histone variant H2A.Z, and inhibition of KDM2B, a H3 K36-specific histone demethylase. Here, we report that Saccharomyces cerevisiae fumarase, Fum1p, acts as a response factor during DNA replication stress, and fumarate enhances survival of yeast lacking Htz1p (H2A.Z in mammals). We observed that exposure to DNA replication stress led to upregulation as well as nuclear enrichment of Fum1p, and raising levels of fumarate in cells via deletion of FUM1 or addition of exogenous fumarate suppressed the sensitivity to DNA replication stress of htz1Δ mutants. This suppression was independent of modulating nucleotide pool levels. Rather, our results are consistent with fumarate conferring resistance to DNA replication stress in htz1Δ mutants by inhibiting the H3 K4-specific histone demethylase Jhd2p, and increasing H3 K4 methylation. Although the timing of checkpoint activation and deactivation remained largely unaffected by fumarate, sensors and mediators of the DNA replication checkpoint were required for fumarate-dependent resistance to replication stress in the htz1Δ mutants. Together, our findings imply metabolic enzymes and metabolites aid in processing replicative intermediates by affecting chromatin modification states, thereby promoting genome integrity.


Asunto(s)
Replicación del ADN , Fumaratos/metabolismo , Código de Histonas , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Histonas/genética , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico
10.
Genetics ; 211(4): 1219-1237, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30728156

RESUMEN

CAF-1 is an evolutionarily conserved H3/H4 histone chaperone that plays a key role in replication-coupled chromatin assembly and is targeted to the replication fork via interactions with PCNA, which, if disrupted, leads to epigenetic defects. In Saccharomyces cerevisiae, when the silent mating-type locus HMR contains point mutations within the E silencer, Sir protein association and silencing is lost. However, mutation of CDC7, encoding an S-phase-specific kinase, or subunits of the H4 K16-specific acetyltransferase complex SAS-I, restore silencing to this crippled HMR, HMRae** Here, we observed that loss of Cac1p, the largest subunit of CAF-1, also restores silencing at HMRae**, and silencing in both cac1Δ and cdc7 mutants is suppressed by overexpression of SAS2 We demonstrate Cdc7p and Cac1p interact in vivo in S phase, but not in G1, consistent with observed cell cycle-dependent phosphorylation of Cac1p, and hypoacetylation of chromatin at H4 K16 in both cdc7 and cac1Δ mutants. Moreover, silencing at HMRae** is restored in cells expressing cac1p mutants lacking Cdc7p phosphorylation sites. We also discovered that cac1Δ and cdc7-90 synthetically interact negatively in the presence of DNA damage, but that Cdc7p phosphorylation sites on Cac1p are not required for responses to DNA damage. Combined, our results support a model in which Cdc7p regulates replication-coupled histone modification via a CAC1-dependent mechanism involving H4 K16ac deposition, and thereby silencing, while CAF-1-dependent replication- and repair-coupled chromatin assembly per se are functional in the absence of phosphorylation of Cdc7p consensus sites on CAF-1.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Silenciador del Gen , Código de Histonas , Histonas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilación , Proteínas de Ciclo Celular/genética , Factor 1 de Ensamblaje de la Cromatina/genética , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Regulación Fúngica de la Expresión Génica , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Mol Biol Cell ; 13(7): 2207-22, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12134062

RESUMEN

In Saccharomyces cerevisiae, silencing at the HM loci depends on Sir proteins, which are structural components of silenced chromatin. To explore the structure and assembly of silenced chromatin, the associations of Sir proteins with sequences across the HMR locus were examined by chromatin immunoprecipitation. In wild-type cells, Sir2p, Sir3p, and Sir4p were spread throughout and coincident with the silenced region at HMR. Sir1p, in contrast, associated only with the HMR-E silencer, consistent with its role in establishment but not maintenance of silencing. Sir4p was required for the association of other Sir proteins with silencers. In contrast, in the absence of Sir2p or Sir3p, partial assemblies of Sir proteins could form at silencers, where Sir protein assembly began. Spreading across HMR required Sir2p and Sir3p, as well as the deacetylase activity of Sir2p. These data support a model for the spreading of silenced chromatin involving cycles of nucleosome deacetylation by Sir2p followed by recruitment of additional Sir2p, Sir3p, and Sir4p to the newly deacetylated nucleosome. This model suggests mechanisms for boundary formation, and for maintenance and inheritance of silenced chromatin. The principles are generalizable to other types of heritable chromatin states.


Asunto(s)
Cromatina/genética , Silenciador del Gen , Genes Fúngicos , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuinas/metabolismo , Animales , Cromatina/metabolismo , Cromosomas Fúngicos , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Histona Desacetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Sustancias Macromoleculares , Modelos Genéticos , Proteínas Nucleares/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Pruebas de Precipitina , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/fisiología , Elementos Silenciadores Transcripcionales/genética
12.
PLoS One ; 11(2): e0149207, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26882112

RESUMEN

The plant secondary metabolite and common food additive dihydrocoumarin (DHC) is an inhibitor of the Sirtuin family of NAD+-dependent deacetylases. Sirtuins are key regulators of epigenetic processes that maintain silent chromatin in yeast and have been linked to gene expression, metabolism, apoptosis, tumorogenesis and age-related processes in multiple organisms, including humans. Here we report that exposure to the polyphenol DHC led to defects in several Sirtuin-regulated processes in budding yeast including the establishment and maintenance of Sir2p-dependent silencing by causing disassembly of silent chromatin, Hst1p-dependent repression of meiotic-specific genes during the mitotic cell cycle. As both transient and prolonged exposure to environmental and dietary factors have the potential to lead to heritable alterations in epigenetic states and to modulate additional Sirtuin-dependent phenotypes, we examined the bioavailability and digestive stability of DHC using an in vivo rat model and in vitro digestive simulator. Our analyses revealed that DHC was unstable during digestion and could be converted to melilotic acid (MA), which also caused epigenetic defects, albeit less efficiently. Upon ingestion, DHC was observed primarily in intestinal tissues, but did not accumulate over time and was readily cleared from the animals. MA displayed a wider tissue distribution and, in contrast to DHC, was also detected in the blood plasma, interstitial fluid, and urine, implying that the conversion of DHC to the less bioactive compound, MA, occurred efficiently in vivo.


Asunto(s)
Cumarinas/farmacología , Dieta , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Animales , Biocatálisis/efectos de los fármacos , Disponibilidad Biológica , Cumarinas/sangre , Cumarinas/farmacocinética , Digestión , Líquido Extracelular/metabolismo , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Genes Reporteros , Sitios Genéticos , Mutación/genética , Fenoles/sangre , Fenoles/orina , Fenotipo , Ratas Sprague-Dawley , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/genética , Sus scrofa
13.
Methods Mol Biol ; 1205: 275-302, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25213251

RESUMEN

Silencing assays have proven to be powerful tools not only for understanding how epigenetic processes function and defining the structural components of silent chromatin, but also for a useful readout for characterizing the functions of proteins involved in chromatin biology that influence epigenetic processes directly or indirectly. This chapter describes a collection of assays for monitoring silencing in Saccharomyces cerevisiae, including qualitative and quantitative methods as well as protocols that provide either indirect or direct measurements of the transcriptional state of loci regulated by silent chromatin.


Asunto(s)
Cromatina/genética , Regulación Fúngica de la Expresión Génica , Silenciador del Gen , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Cromatina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo
14.
FEBS Lett ; 585(18): 2920-8, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21846465

RESUMEN

A vast array of proteins is recruited to the replication fork in a dynamic and coordinated manner through physical interactions with Proliferating Cell Nuclear Antigen, PCNA. How this complex exchange of PCNA binding partners is choreographed to ensure proper replication origin licensing, DNA synthesis during normal replication or repair of DNA damage, chromatin assembly, DNA methylation, histone modification, and sister chromatid cohesion is only beginning to be appreciated. In this review, several roles of ubiquitin-related modifications in the recruitment and turnover of PCNA-interacting proteins at the replication fork are considered.


Asunto(s)
Reparación del ADN , Replicación del ADN , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ubiquitina/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Humanos , Proteínas Nucleares/metabolismo , Unión Proteica , Procesamiento Proteico-Postraduccional , Ubiquitina-Proteína Ligasas/metabolismo
15.
Mol Biol Cell ; 19(11): 4993-5005, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18799617

RESUMEN

The composition of posttranslational modifications on newly synthesized histones must be altered upon their incorporation into chromatin. These changes are necessary to maintain the same gene expression state at individual chromosomal loci before and after DNA replication. We have examined how one modification that occurs on newly synthesized histone H3, acetylation of K56, influences gene expression at epigenetically regulated loci in Saccharomyces cerevisiae. H3 K56 is acetylated by Rtt109p before its incorporation into chromatin during S phase, and this modification is then removed by the NAD(+)-dependent deacetylases Hst3p and Hst4p during G2/M phase. We found silenced loci maintain H3 K56 in a hypoacetylated state, and the absence of this modification in rtt109 mutants was compatible with HM and telomeric silencing. In contrast, loss of HST3 and HST4 resulted in hyperacetylation of H3 K56 within silent loci and telomeric silencing defects, despite the continued presence of Sir2p throughout these loci. These silencing defects in hst3Delta hst4Delta mutants could be suppressed by deletion of RTT109. In contrast, overexpression of Sir2p could not restore silencing in hst3Delta hst4Delta mutants. Together, our findings argue that HST3 HST4 play critical roles in maintaining the hypoacetylated state of K56 on histone H3 within silent chromatin.


Asunto(s)
Cromatina/metabolismo , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Acetilación , Genes del Tipo Sexual de los Hongos , Mutación/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2 , Sirtuinas/metabolismo , Telómero/enzimología
16.
J Mol Biol ; 381(4): 826-44, 2008 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-18619469

RESUMEN

Silent chromatin formation in Saccharomyces cerevisiae begins with the recruitment of silent information regulator (Sir) proteins to silencers at the silent mating-type loci and to telomere ends. Next, Sir2/3/4 proteins propagate across these loci as histones are deacetylated by the NAD(+)-dependent histone deacetylase Sir2p, ultimately resulting in the cessation of transcription and in the loss of SET1- and DOT1-dependent methylation of histone H3 within silent chromatin. We analyzed the effects of modifiable lysine residues on histones H3 and H4 on experimentally defined steps in silencing: recruitment of Sir proteins to silencers, Sir protein spreading, and transcriptional repression. Loss of acetylation, but not methylation, facilitated both Sir recruitment and spreading, and Sir spreading across hypoacetylated chromatin could disrupt SET1- and DOT1-dependent histone methylation without silencing underlying genes. Our data indicate that loss of methylation of K4 and K79 on histone H3 reflects intermediate events during the formation of silent chromatin, and that retention of a positive charge at a single residue on histone H4 (K16) was both necessary and sufficient to permit Sir spreading beyond sites of their recruitment.


Asunto(s)
Silenciador del Gen , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Acetilación , Metilación , Mutación/genética , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo , Transcripción Genética
17.
Annu Rev Biochem ; 72: 481-516, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12676793

RESUMEN

Genomes are organized into active regions known as euchromatin and inactive regions known as heterochromatin, or silenced chromatin. This review describes contemporary knowledge and models for how silenced chromatin in Saccharomyces cerevisiae forms, functions, and is inherited. In S. cerevisiae, Sir proteins are the key structural components of silenced chromatin. Sir proteins interact first with silencers, which dictate which regions are silenced, and then with histone tails in nucleosomes as the Sir proteins spread from silencers along chromosomes. Importantly, the spreading of silenced chromatin requires the histone deacetylase activity of Sir2p. This requirement leads to a general model for the spreading and inheritance of silenced chromatin or other special chromatin states. Such chromatin domains are marked by modifications of the nucleosomes or DNA, and this mark is able to recruit an enzyme that makes further marks. Thus, among different organisms, multiple forms of repressive chromatin can be formed using similar strategies but completely different proteins. We also describe emerging evidence that mutations that cause global changes in the modification of histones can alter the balance between euchromatin and silenced chromatin within a cell.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Silenciador del Gen/fisiología , Saccharomyces cerevisiae/genética , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Histona Desacetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Nucleosomas/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Transcripción Genética/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA