Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Inorg Chem ; 62(43): 17612-17624, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37847556

RESUMEN

An amino-functionalized terphenyl-tetracarboxylic acid, 2'-amino-[1,1':4',1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid (H4tpta), was used as an adaptable linker to synthesize, under hydrothermal conditions, eight coordination polymers (CPs). The obtained products were formulated as [Co(µ6-H2tpta)]n (1), [Co(µ3-H2tpta)(2,2'-bipy)]n (2), [M3(µ6-Htpta)2(2,2'-bipy)2]n (M = Mn (3), Cd (4)), [Ni2(µ4-tpta)(phen)2(H2O)4]n (5), [Zn2(µ6-tpta)(phen)2]n (6), {[Zn2(µ6-tpta)(µ-4,4'-bipy)]·H2O}n (7), and [Zn2(µ6-tpta)(µ-H2biim)(H2O)2]n (8), wherein 2,2'-bipyridine (2,2'-bipy), 4,4'-bipyridine (4,4'-bipy), 1,10-phenanthroline (phen), or 2,2'-biimidazole (H2biim) are present as additional stabilizing ligands. The structural types of 1-8 vary from one-dimensional (1D) (2, 5) and two-dimensional (2D) (3, 4, 6) CPs to three-dimensional (3D) metal-organic frameworks (MOFs) (1, 7, and 8) with a diversity of topologies. The products 1-8 were investigated as catalysts in the Knoevenagel condensation involving aldehydes and active methylene derivatives (malononitrile, ethyl cyanoacetate, or tert-butyl cyanoacetate), leading to high condensation product yields (up to 99%) under optimized conditions. Various reaction conditions, substrate scope, and catalyst recycling were investigated. This work broadens the application of H4tpta as a versatile tetracarboxylate linker for the generation of diverse CPs/MOFs.

2.
Inorg Chem ; 61(32): 12577-12590, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35920738

RESUMEN

The present work explores two biphenyl-dicarboxylate linkers, 3,3'-dihydroxy-(1,1'-biphenyl)-4,4'-dicarboxylic (H4L1) and 4,4'-dihydroxy-(1,1'-biphenyl)-3,3'-dicarboxylic (H4L2) acids, in hydrothermal generation of nine new compounds formulated as [Co2(µ2-H2L1)2(phen)2(H2O)4] (1), [Mn2(µ4-H2L1)2(phen)2]n·4nH2O (2), [Zn(µ2-H2L1)(2,2'-bipy)(H2O)]n (3), [Cd(µ2-H2L1) (2,2'-bipy)(H2O)]n (4), [Mn2(µ2-H2L1)(µ4-H2L1)(µ2-4,4'-bipy)2]n·4nH2O (5), [Zn(µ2-H2L1)(µ2-4,4'-bipy)]n (6), [Zn(µ2-H2L2)(phen)]n (7), [Cd(µ3-H2L2)(phen)]n (8), and [Cu(µ2-H2L2) (µ2-4,4'-bipy)(H2O)]n (9). These coordination polymers (CPs) were generated by reacting a metal(II) chloride, a H4L1 or H4L2 linker, and a crystallization mediator such as 2,2'-bipy (2,2'-bipyridine), 4,4'-bipy (4,4'-bipyridine), or phen (1,10-phenanthroline). The structural types of 1-9 range from molecular dimers (1) to one-dimensional (3, 4, 7) and two-dimensional (8, 9) CPs as well as three-dimensional metal-organic frameworks (2, 5, 6). Their structural, topological, and interpenetration features were underlined, including an identification of unique two- and fivefold 3D + 3D interpenetrated nets in 5 and 6. Phase purity, thermal and luminescence behavior, as well as catalytic activity of the synthesized products were investigated. Particularly, a Zn(II)-based CP 3 acts as an effective and recyclable heterogeneous catalyst for Henry reaction between a model substrate (4-nitrobenzaldehyde) and nitroethane to give ß-nitro alcohol products. For this reaction, various parameters were optimized, followed by the investigation of the substrate scope. By reporting nine new compounds and their structural traits and functional properties, the present work further outspreads a family of CPs constructed from the biphenyl-dicarboxylate H4L1 and H4L2 linkers.


Asunto(s)
Cadmio , Polímeros , Compuestos de Bifenilo , Ácidos Carboxílicos/química , Cristalografía por Rayos X , Polímeros/química
3.
Inorg Chem ; 61(45): 17951-17962, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36318516

RESUMEN

4,4'-(Pyridine-3,5-diyl)dibenzoic acid (H2pdba) was explored as an adaptable linker for assembling a diversity of new manganese(II), cobalt(II/III), nickel(II), and copper(II) coordination polymers (CPs): [Mn(µ4-pdba)(H2O)]n (1), {[M(µ3-pdba)(phen)]·2H2O}n (M = Co (2), Ni (3)), {[Cu2(µ3-pdba)2(bipy)]·2H2O}n (4), {[Co(µ3-pdba)(bipy)]·2H2O}n (5), [Co2(µ3-pdba)(µ-Hbiim)2(Hbiim)]n (6), and [M(µ4-pdba)(py)]n (M = Co (7), Ni (8)). The CPs were hydrothermally synthesized using metal(II) chloride precursors, H2pdba, and different coligands functioning as crystallization mediators (phen: 1,10-phenanthroline; bipy: 2,2'-bipyridine, H2biim: 2,2'-biimidazole; py: pyridine). Structural networks of 1-8 range from two-dimensional (2D) metal-organic layers (1-3, 5-8) to three-dimensional (3D) metal-organic framework (MOF) (4) and disclose several types of topologies: sql (in 1), hcb (in 2, 3, 5), tfk (in 4), 3,5L66 (in 6), and SP 2-periodic net (6,3)Ia (in 7, 8). Apart from the characterization by standard methods, catalytic potential of the obtained CPs was also screened in the Knoevenagel condensation of benzaldehyde with propanedinitrile to give 2-benzylidenemalononitrile (model reaction). Several reaction parameters were optimized, and the substrate scope was explored, revealing the best catalytic performance for a 3D MOF 4. This catalyst is recyclable and can lead to substituted dinitrile products in up to 99% product yields. The present study widens the use of H2pdba as a still poorly studied linker toward designing novel functional coordination polymers.

4.
Inorg Chem ; 61(37): 14800-14814, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36059209

RESUMEN

The present study describes a new feature in the self-assembly of cagelike copperphenylsilsesquioxanes: the strong influence of acetone solvates on cage structure formation. By this simple approach, a series of novel tetra-, hexa-, or nonacoppersilsesquioxanes were isolated and characterized. In addition, several new complexes of Cu4 or Cu6 nuclearity bearing additional nitrogen-based ligands (ethylenediamine, 2,2'-bipyridine, phenanthroline, bathophenanthroline, or neocuproine) were produced. Single-crystal X-ray diffraction studies established molecular architectures of all of the synthesized products. Several coppersilsesquioxanes represent a novel feature of cagelike metallasilsesquioxane (CLMS) in terms of molecular topology. A Cu4-silsesquioxane complex with ethylenediamine (En) ligands was isolated via the unprecedented self-assembly of a partly condensed framework of silsesquioxane ligands, followed by the formation of a sandwich-like cage. Two prismatic Cu6 complexes represent the different conformers─regular and elliptical hexagonal prisms, "cylinders", determined by the different orientations of the coordinated acetone ligands ("shape-switch effect"). A heterometallic Cu4Na4-sandwich-like derivative represents the first example of a metallasilsesquioxane complex with diacetone alcohol ligands formed in situ due to acetone condensation reaction. As a selected example, the compound [(Ph6Si6O11)2Cu4En2]·(acetone)2 was explored in homogeneous oxidation catalysis. It catalyzes the oxidation of alkanes to alkyl hydroperoxides with hydrogen peroxide and the oxidation of alcohols to ketones with tert-butyl hydroperoxide. Radical species take part in the oxidation of alkanes. Besides, [(Ph6Si6O11)2Cu4En2]·(acetone)2 catalyzes the mild oxidative functionalization of gaseous alkanes (ethane, propane, n-butane, and i-butane). Two different model reactions were investigated: (1) the oxidation of gaseous alkanes with hydrogen peroxide to give a mixture of oxygenates (alcohols, ketones, or aldehydes) and (2) the carboxylation of Cn gaseous alkanes with carbon monoxide, water, and potassium peroxodisulfate to give Cn+1 carboxylic acids (main products), along with the corresponding Cn oxygenates. For these reactions, the effects of acid promoter, reaction time, and substrate scope were explored. As expected for free-radical-type reactions, the alkane reactivity follows the trend C2H6 < C3H8 < n-C4H10 < i-C4H10. The highest total product yields were observed in the carboxylation of i-butane (up to 61% based on i-C4H10). The product yields and catalyst turnover numbers (TONs) are remarkable, given an inertness of gaseous alkanes and very mild reaction conditions applied (low pressures, 50-60 °C temperatures).

5.
Inorg Chem ; 60(13): 9631-9644, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34121384

RESUMEN

This work describes an unexpected generation of a new 3D metal-organic framework (MOF), [Cu4(µ-Cl)6(µ4-O)Cu(OH)2(µ-PTA═O)4]n·2nCl-EtOH·2.5nH2O, from copper(II) chloride and 1,3,5-triaza-7-phosphaadamantane 7-oxide (PTA═O). The obtained product is composed of diamandoid tetracopper(II) [Cu4(µ-Cl)6(µ4-O)] cages and monocopper(II) [Cu(OH)2] units that are assembled, via the diamandoid µ-PTA═O linkers, into an intricate 3D net with an nbo topology. Magnetic susceptibility measurements on this MOF in the temperature range of 1.8-300 K reveal a ferromagnetic interaction (J = +20 cm-1) between the neighboring copper(II) ions. Single-point DFT calculations disclose a strong delocalization of the spin density over the tetranuclear unit. The magnitude of exchange coupling, predicted from the broken-symmetry DFT studies, is in good agreement with the experimental data. This copper(II) compound also acts as an active catalyst for the mild oxidation and carboxylation of alkanes. The present study provides a unique example of an MOF that is assembled from two different types of adamantoid Cu4 and PTA═O cages, thus contributing to widening a diversity of functional metal-organic frameworks.

6.
Inorg Chem ; 60(19): 14491-14503, 2021 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-34128647

RESUMEN

This study describes a time-dependent self-assembly generation of new copper(II) coordination compounds from an aqueous-medium reaction mixture composed of copper(II) nitrate, H3bes biobuffer (N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid), ammonium hydroxide, and benzenecarboxylic acid, namely, 4-methoxybenzoic (Hfmba) or 4-chlorobenzoic (Hfcba) acid. Two products were isolated from each reaction, namely, 1D coordination polymers [Cu3(µ3-OH)2(µ-fmba)2(fmba)2(H2O)2]n (1) or [Cu2(µ-OH)2(µ-fcba)2]n (2) and discrete tetracopper(II) rings [Cu4(µ-Hbes)3(µ-H2bes)(µ-fmba)]·2H2O (3) or [Cu4(µ-Hbes)3(µ-H2bes)(µ-fcba)]·4H2O (4), respectively. These four compounds were obtained as microcrystalline air-stable solids and characterized by standard methods, including the single-crystal X-ray diffraction. The structures of 1 and 2 feature distinct types of metal-organic chains driven by the µ3- or µ-OH- ligands along with the µ-benzenecarboxylate linkers. The structures of 3 and 4 disclose the chairlike Cu4 rings assembled from four µ-bridging and chelating aminoalcoholate ligands along with µ-benzenecarboxylate moieties playing a core-stabilizing role. Catalytic activity of 1-4 was investigated in two model reactions, namely, (a) the mild oxidation of saturated hydrocarbons with hydrogen peroxide to form alcohols and ketones and (b) the mild carboxylation of alkanes with carbon monoxide, water, and peroxodisulfate to generate carboxylic acids. Cyclohexane and propane were used as model cyclic and gaseous alkanes, while the substrate scope also included cyclopentane, cycloheptane, and cyclooctane. Different reaction parameters were investigated, including an effect of the acid cocatalyst and various selectivity parameters. The obtained total product yields (up to 34% based on C3H8 or up to 47% based on C6H12) in the carboxylation of propane and cyclohexane are remarkable taking into account an inertness of these saturated hydrocarbons and low reaction temperatures (50-60 °C). Apart from notable catalytic activity, this study showcases a novel time-dependent synthetic strategy for the self-assembly of two different Cu(II) compounds from the same reaction mixture.

7.
Inorg Chem ; 60(11): 8062-8074, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33979518

RESUMEN

This study reports intriguing features in the self-assembly of cage copper(II) silsesquioxanes in the presence of air. Despite the wide variation of solvates used, a series of prismatic hexanuclear Cu6 cages (1-5) were assembled under mild conditions. In turn, syntheses at higher temperatures are accompanied by side reactions, leading to the oxidation of solvates (methanol, 1-butanol, and tetrahydrofuran). The oxidized solvent derivatives then specifically participate in the formation of copper silsesquioxane cages, allowing the isolation of several unusual Cu8-based (6 and 7) and Cu6-based (8) complexes. When 1,4-dioxane was applied as a reaction medium, deep rearrangements occurred (with a total elimination of silsesquioxane ligands), causing the formation of mononuclear copper(II) compounds bearing oxidized dioxane fragments (9 and 11) or a formate-driven 1D coordination polymer (10). Finally, a "directed" self-assembly of sil- and germsesquioxanes from copper acetate (or formate) resulted in the corresponding acetate (or formate) containing Cu6 cages (12 and 13) that were isolated in high yields. The structures of all of the products 1-13 were established by single-crystal X-ray diffraction, mainly based on the use of synchrotron radiation. Moreover, the catalytic activity of compounds 12 and 13 was evaluated toward the mild homogeneous oxidation of C5-C8 cycloalkanes with hydrogen peroxide to form a mixture of the corresponding cyclic alcohols and ketones.

8.
Inorg Chem ; 58(9): 5875-5885, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-31007025

RESUMEN

New coordination polymers of cobalt(II), namely, [Co(µ4-cpna)(H2O)2] n (1), [Co(µ3-cpna)(phen)(H2O)] n· nH2O (2), [Co3(µ4-dppa)2(H2O)6] n·2 nH2O (3), and [Co3(µ5-dppa)2(µ-4,4'-bipy)(H2O)2] n·4 nH2O (4), have been generated under hydrothermal conditions from CoCl2·6H2O, two different multifunctional pyridine-carboxylic acids {H2cpna: 5-(4-carboxyphenoxy)nicotinic acid; H3dppa: 5-(3,4-dicarboxylphenyl)picolinic acid}, and optional N, N-supporting ligands {phen: 1,10-phenanthroline; 4,4'-bipy: 4,4'-bipyridine} acting as mediators of crystallization. These Co(II) coordination polymers (CPs) have been obtained as stable crystalline materials and characterized by conventional solid-state techniques, including X-ray crystallography. The obtained products are 3D metal-organic frameworks (MOFs 1 and 4) or 2D coordination polymers (CPs 2 and 3). Analysis of the topologies of simplified nets has revealed the sra (1), fes (2), and 3,4L13 (3) networks, in addition to a very complex topologically unique framework in 4. An observed diversity of structures is driven by types of carboxylate building blocks and crystallization mediators. Thermal stability and magnetic and catalytic properties of 1-4 have also been studied. In fact, the Co(II) compounds act as heterogeneous catalysts for the oxidation of alcohols with tBuOOH ( tert-butylhydroperoxide) under mild conditions. Compound 2 features a good catalytic activity (up to 45% yield) in the oxidation of 1-indanol to 1-indanone. Finally, products 1-4 broaden a still very small number of CPs or MOFs driven by the present type of multifunctional pyridine-carboxylic acids (H2cpna, H2dppa).

9.
Inorg Chem ; 58(4): 2403-2412, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30702871

RESUMEN

A three-component aqueous reaction system comprising copper(II) acetate (metal node), poly(carboxylic acid) with a phenylpyridine or biphenyl core (main building block), and 1,10-phenanthroline (crystallization mediator) was investigated under hydrothermal conditions. As a result, four new coordination compounds were self-assembled, namely, {[Cu(µ3-cpna)(phen)]·H2O} n (1), {[Cu(µ-Hbtc)(phen)]·H2O} n (2), {[Cu(µ3-Hcpic)(phen)]·2H2O} n (3), and [Cu6(µ-Hcptc)6(phen)6]·6H2O (4), where H2cpna = 5-(2'-carboxylphenyl)nicotinic acid, H3btc = biphenyl-2,4,4'-tricarboxylic acid, H3cpic = 4-(5-carboxypyridin-2-yl)isophthalic acid, H3cptc = 2-(4-carboxypyridin-3-yl)terephthalic acid, and phen = 1,10-phenanthroline. Crystal structures of compounds 1-3 reveal that they are 1D coordination polymers with a ladder, linear, or double-chain structure, while product 4 is a 0D hexanuclear complex. All of the structures are extended further [1D → 2D (1 and 2), 1D → 3D (3), and 0D → 3D (4)] into hydrogen-bonded networks. The type of a multicarboxylate building block has a considerable effect on the final structures of 1-4. The magnetic behavior and thermal stability of 1-4 were also investigated. Besides, these copper(II) derivatives efficiently catalyze the oxidation of cycloalkanes with hydrogen peroxide under mild conditions. The obtained products are the unique examples of copper derivatives that were assembled from H2cpna, H3btc, H3cpic, and H3cptc, thus opening up their use as multicarboxylate ligands toward the design of copper-organic architectures.

10.
Org Biomol Chem ; 17(33): 7706-7714, 2019 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-31384876

RESUMEN

Three new copper(ii) coordination compounds formulated as [Cu(H1.5bdea)2](hba)·2H2O (1), [Cu2(µ-Hbdea)2(aca)2]·4H2O (2), and [Cu2(µ-Hbdea)2(µ-bdca)]n (3) were generated by aqueous medium self-assembly synthesis from Cu(NO3)2, N-butyldiethanolamine (H2bdea) as a main N,O-chelating building block and different carboxylic acids [4-hydroxybenzoic (Hhba), 9-anthracenecarboxylic (Haca), or 4,4'-biphenyldicarboxylic (H2bdca) acid] as supporting carboxylate ligands. The structures of products range from discrete mono- (1) or dicopper(ii) (2) cores to a 1D coordination polymer (3), and widen a family of copper(ii) coordination compounds derived from H2bdea. The obtained compounds were applied as bioinspired homogeneous catalysts for the mild C-H functionalization of saturated hydrocarbons (cyclic and linear C5-C8 alkanes). Two model catalytic reactions were explored, namely the oxidation of hydrocarbons with H2O2 to a mixture of alcohols and ketones, and the carboxylation of alkanes with CO/S2O82- to carboxylic acids. Both processes proceed under mild conditions with a high efficiency and the effects of different parameters (e.g., reaction time and presence of acid promoter, amount of catalyst and solvent composition, substrate scope and selectivity features) were studied and discussed in detail. In particular, an interesting promoting effect of water was unveiled in the oxidation of cyclohexane that is especially remarkable in the reaction catalyzed by 3, thus allowing a potential use of diluted, in situ generated solutions of hydrogen peroxide. Moreover, the obtained values of product yields (up to 41% based on alkane substrate) are very high when dealing with the C-H functionalization of saturated hydrocarbons and the mild conditions of these catalytic reactions (50-60 °C, H2O/CH3CN medium). This study thus contributes to an important field of alkane functionalization and provides a notable example of new Cu-based catalytic systems that can be easily generated by self-assembly from simple and low-cost chemicals.

11.
Inorg Chem ; 57(17): 10656-10666, 2018 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-30102028

RESUMEN

The synthesis, structural characterization, topological analysis, proton conductivity, and catalytic properties are reported of two Cu(II)-based compounds, namely a dinuclear Cu(II) complex [Cu2(µ-VPA)2(phen)2(H2O)2]·8H2O (1) (H2VPA = vinylphosphonic acid, phen = 1,10-phenanthroline) and a 1D coordination polymer [Cu(µ-SO4)(phen)(H2O)2]∞ (2). Their structural features and H-bonding interactions were investigated in detail, showing that the metal-organic structures of 1 and 2 are extended by multiple hydrogen bonds to more complex 2D or 1D H-bonded architectures with the kgd [Shubnikov plane net (3.6.3.6)/dual] and SP 1-periodic net (4,4)(0,2) topology, respectively. These nets are primarily driven by the H-bonding interactions involving water ligands and H2O molecules of crystallization; besides, the (H2O)4/(H2O)5 clusters were identified in 1. Both 1 and 2 are moderate proton conductors, with proton conductivity values, σ = 3.65 × 10-6 and 3.94 × 10-6 S·cm-1, respectively (measured at 80 °C and 95% relative humidity). Compounds 1 and 2 are also efficient homogeneous catalysts for the mild oxidative functionalization of C5-C8 cycloalkanes (cyclopentane, cyclohexane, cycloheptane, and cyclooctane), namely for the oxidation by H2O2 to give cyclic alcohols and ketones and the hydrocarboxylation by CO/H2O and S2O82- to the corresponding cycloalkanecarboxylic acids as major products. The catalytic reactions proceed under mild conditions (50-60 °C) in aqueous acetonitrile medium, resulting in up to 34% product yields based on cycloalkane substrate.

12.
Molecules ; 24(1)2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30577477

RESUMEN

Two new copper(II) coordination compounds, namely a 1D coordination polymer [Cu(µ-cpna)(phen)(H2O)]n (1) and a discrete tetracopper(II) derivative [Cu(phen)2(H2O)]2[Cu2(µ-Hdppa)2(Hdppa)2] (2), were hydrothermally synthesized from copper(II) chloride as a metal source, 5-(4-carboxyphenoxy)nicotinic acid (H2cpna) or 5-(3,4-dicarboxylphenyl)picolinic acid (H3dppa) as a principal building block, and 1,10-phenanthroline (phen) as a crystallization mediator. Compounds 1 and 2 were isolated as air-stable microcrystalline solids and fully characterized by elemental and thermogravimetric analyses, IR spectroscopy, powder and single-crystal X-ray diffraction. In the solid state, the structure of 1 discloses the linear interdigitated 1D coordination polymer chains with the 2C1 topology. The crystal structure of an ionic derivative 2 shows that the mono- and dicopper(II) units are extended into the intricate 1D hydrogen-bonded chains with the SP 1-periodic net (4,4)(0,2) topology. Thermal stability and catalytic properties of 1 and 2 were also investigated. In fact, both Cu derivatives act as efficient homogeneous catalysts (catalyst precursors) for the mild oxidation of cycloalkanes by hydrogen peroxide to give the corresponding alcohols and ketones; the substrate scope and the effects of type and amount of acid promoter as well as bond-, regio-, and stereo-selectivity features were investigated.


Asunto(s)
Cobre/química , Ciclohexanos/química , Polímeros/química , Piridinas/química , Catálisis , Peróxido de Hidrógeno/química , Estructura Molecular , Oxidación-Reducción
13.
Inorg Chem ; 55(1): 125-35, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26678552

RESUMEN

Three novel water-soluble 2D copper(II) coordination polymers-[{Cu2(µ2-dmea)2(H2O)}2(µ4-pma)]n·4nH2O (1), [{Cu2(µ2-Hedea)2}2(µ4-pma)]n·4nH2O (2), and [{Cu(bea)(Hbea)}4(µ4-pma)]n·2nH2O (3)-were generated by an aqueous medium self-assembly method from copper(II) nitrate, pyromellitic acid (H4pma), and different aminoalcohols [N,N-dimethylethanolamine (Hdmea), N-ethyldiethanolamine (H2edea), and N-benzylethanolamine (Hbea)]. Compounds 2 and 3 represent the first coordination polymers derived from H2edea and Hbea. All the products were characterized by infrared (IR), electron paramagnetic resonance (EPR), and ultraviolet-visible light (UV-vis) spectroscopy, electrospray ionization-mass spectroscopy (ESI-MS(±)), thermogravimetric and elemental analysis, and single-crystal X-ray diffraction (XRD), which revealed that their two-dimensional (2D) metal-organic networks are composed of distinct dicopper(II) or monocopper(II) aminoalcoholate units and µ4-pyromellitate spacers. From the topological viewpoint, the underlying 2D nets of 1-3 can be classified as uninodal 4-connected layers with the sql topology. The structures of 1 and 2 are further extended by multiple intermolecular hydrogen bonds, resulting in three-dimensional (3D) hydrogen-bonded networks with rare or unique topologies. The obtained compounds also act as highly efficient precatalysts for the mild homogeneous oxidation, by aqueous H2O2 in acidic MeCN/H2O medium, of various cycloalkanes to the corresponding alcohols and ketones. Overall product yields up to 45% (based on cycloalkane) were attained and the effects of various reaction parameters were investigated, including the type of precatalyst and acid promoter, influence of water, and substrate scope. Although water usually strongly inhibits the alkane oxidations, a very pronounced promoting behavior of H2O was detected when using the precatalyst 1, resulting in a 15-fold growth of an initial reaction rate in the cyclohexane oxidation on increasing the amount of H2O from ∼4 M to 17 M in the reaction mixture, followed by a 2-fold product yield growth.

14.
Inorg Chem ; 54(11): 5204-12, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25974644

RESUMEN

Two new coordination compounds with tetracopper(II) cores, namely, a 1D coordination polymer, [Cu4(µ4-H2edte)(µ5-H2edte)(sal)2]n·10nH2O (1), and a discrete 0D tetramer, [Cu4(µ4-Hedte)2(Hpmal)2(H2O)]·7.5H2O (2), were easily self-assembled from aqueous solutions of copper(II) nitrate, N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine (H4edte), salicylic acid (H2sal), or phenylmalonic acid (H2pma). The obtained compounds were characterized by IR and electron paramagnetic resonance spectroscopy, thermogravimetric and elemental analysis, and single-crystal X-ray diffraction. In addition to different dimensionalities, their structures reveal distinct single-open [Cu4(µ2-O)(µ3-O)3] (in 1) or double-open [Cu4(µ2-O)2(µ3-O)2] (in 2) cubane cores with 3M4-1 topology. In crystal structures, numerous crystallization water molecules are arranged into the intricate infinite 1D {(H2O)18}n water tapes (in 1) or discrete (H2O)9 clusters (in 2) that participate in multiple hydrogen-bonding interactions with the metal-organic hosts, thus extending the overall structures into very complex 3D supramolecular networks. After simplification, their topological analysis revealed the binodal 6,10- or 6,8-connected underlying 3D nets with unique or rare 6,8T2 topology in 1 and 2, respectively. The magnetic properties of 1 and 2 were investigated in the 1.8-300 K temperature range, indicating overall antiferromagnetic interactions between the adjacent Cu(II) ions within the [Cu4O4] cores. The obtained compounds also act as bioinspired precatalysts for mild homogeneous oxidation, by aqueous hydrogen peroxide at 50 °C in an acidic MeCN/H2O medium, of various cyclic and linear C5-C8 alkanes to the corresponding alcohols and ketones. Overall product yields of up to 21% (based on alkane) were achieved, and the effects of various reaction parameters were studied.

15.
Inorg Chem ; 52(15): 8601-11, 2013 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-23876107

RESUMEN

The reactions of [VO(acac)2] with bis(salicylaldehyde)-oxaloyldihydrazone (H4L) and an alkali metal carbonate M2CO3 (M = K, Na, Cs), in EtOH/H2O medium upon reflux, resulted in the generation of three new heterometallic V(V)/M materials, namely the 1D [(VO2)2(µ4-L){Na2(µ-H2O)2(H2O)2}]n (1), 2D [{V(µ-O)2}2(µ4-L){K2(µ-H2O)2(H2O)2}]n (2), and 3D [{V(µ-O)(µ3-O)}2(µ8-L){Cs2(µ-H2O)2(H2O)2}]n (3) coordination polymers. They were isolated as air-stable solids and fully characterized by IR, UV-vis, (1)H, and (51)V NMR spectroscopy, ESI-MS(±), elemental, thermal, and single-crystal X-ray diffraction analyses, the latter showing that 1-3 are constructed from the resembling [(VO2)2(µ(4/8)-L)](2-) blocks assembled by the differently bound aqua-metal [M2(µ-H2O)2(H2O)2](2+) moieties (M = Na, K, Cs). The main distinctive features of 1-3 arise from the different coordination numbers of Na (5), K (7), and Cs (9) atoms, thus increasing the complexity of the resulting networks from the ladder-like 1D chains in 1 to double 2D layers in 2, and layer-pillared 3D framework in 3. The topological analysis of 2 disclosed a uninodal 4-connected underlying net with a rare kgm [Shubnikov plane net (3.6.3.6)/kagome pattern] topology, while 3 features a trinodal 4,7,8-connected underlying net with an unprecedented topology. Compounds 1-3 also show solubility in water (S(25 °C) ≈ 4-7 mg mL(-1)) and were applied as efficient precatalysts for the homogeneous oxidation of cyclohexane by aqueous H2O2, under mild conditions (50 °C) in MeCN/H2O medium and in the presence of an acid promoter. Total yields (based on substrate) of cyclohexanol and cyclohexanone up to 36% and turnover numbers (TONs) up to 5700 were achieved.

16.
Inorg Chem ; 51(21): 11229-31, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23098259

RESUMEN

The new hexanuclear mixed-valence vanadium complex [V(3)O(3)(OEt)(ashz)(2)(µ-OEt)](2) (1) with an N,O-donor ligand is reported. It acts as a highly efficient catalyst toward alkane oxidations by aqueous H(2)O(2). Remarkably, high turnover numbers up to 25000 with product yields of up to 27% (based on alkane) stand for one of the most active systems for such reactions.


Asunto(s)
Alcanos/química , Complejos de Coordinación/química , Vanadio/química , Catálisis , Peróxido de Hidrógeno/química , Modelos Moleculares , Oxidación-Reducción
17.
Inorg Chem ; 51(9): 5224-34, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22482365

RESUMEN

The facile aqueous medium reactions of copper(II) nitrate with BES biobuffer [(HOCH(2)CH(2))(2)N(CH(2)CH(2)SO(3)H), hereinafter referred as H(3)bes] in the presence of various benzenecarboxylic acids [benzoic (Hba), 3-hydroxybenzoic (Hhba), and 3,5-dihydroxybenzoic (Hdhba) acid] and lithium hydroxide gave rise to the self-assembly generation of three new heterometallic Cu(II)/Li materials, [Li(H(2)O)(4)][Cu(4)(µ(2)-Hbes)(4)(µ(2)-ba)]·H(2)O (1) and [Cu(4)(µ(3)-Hbes)(4)(L){Li(H(2)O)(2)}](n)·3nH(2)O {L = µ(2)-hba (2) and µ(2)-dhba (3)}. They were isolated as air-stable crystalline solids and fully characterized by infrared (IR) and UV-vis spectroscopy and electrospray ionization (ESI)-MS(±), elemental, thermal, and single-crystal X-ray diffraction analyses. The latter revealed that 1-3 have comparable packing patterns and unit cell parameters, being composed of similar [Cu(4)(µ-Hbes)(4)(µ-carboxylate)](-) cores and [Li(H(2)O)(4)](+) cations (in 1) or [µ-Li(H(2)O)(2)](+) groups (in 2 and 3), which are arranged into discrete 0D aggregates in 1 or infinite 3D noninterpenetrating metal-organic networks in 2 and 3. The topological analysis of the coordination polymers 2 and 3 disclosed the trinodal 3,3,4-connected underlying nets with an unprecedented topology defined by the point symbol of (4.6.8)(4)(4(2).6)(2)(6(2).16(2).18(2)), further simplification of which resulted in the binodal 4,4-connected nets with the pts (PtS) topology. Apart from representing very rare examples of coordination compounds derived from H(3)bes, 1-3 feature solubility in water and were applied as efficient and versatile catalyst precursors for the mild (60 °C) single-pot hydrocarboxylation, by CO and H(2)O, of various gaseous, linear, and cyclic C(n) (n = 2-9) alkanes into the corresponding C(n+1) carboxylic acids, in H(2)O/MeCN medium under homogeneous conditions and in the presence of potassium peroxodisulfate. Total yields (based on alkane) of carboxylic acids up to 78% were achieved, which are remarkable in the field of alkane functionalization under mild conditions, especially for a C-C bond formation reaction in aqueous acid-solvent-free medium.


Asunto(s)
Alcanos/química , Ácidos Carboxílicos/química , Cobre/química , Litio/química , Compuestos Organometálicos/química , Polímeros/química , Ácidos Sulfónicos/química , Tampones (Química) , Catálisis , Modelos Moleculares , Conformación Molecular , Compuestos Organometálicos/síntesis química , Polímeros/síntesis química
18.
Chemistry ; 16(31): 9485-93, 2010 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-20455222

RESUMEN

A direct, selective and highly efficient method has been developed for the hydrocarboxylation of C(n) gaseous alkanes into C(n+1) carboxylic acids, in aqueous acid-solvent-free medium at low temperatures. The approach is based on a metal-free or copper-promoted reaction of ethane, propane or n-butane with carbon monoxide and water, in a H(2)O/MeCN medium at 50-60 degrees C, in the presence of potassium peroxodisulfate. The effects of various reaction parameters, such as the absence or presence of a copper promoter, solvent composition, temperature, time, CO and alkane pressure, were studied. A free radical mechanism was confirmed by radical trap experiments involving acyl radical formation, oxidation and subsequent hydroxylation by water. Remarkable yields (based on alkane) of carboxylic acids in the 34-41 % range were achieved even in the metal-free systems, although in the presence of a tetracopper(II) triethanolaminate derived promoter they reach superior values of 58 and 87 % for the hydrocarboxylations of propane and n-butane, respectively; in these cases, branched isobutyric and 2-methylbutyric acids were the predominant products. From a green perspective, important features of the present alkane hydrocarboxylations include the exceptional metal-free, mild and acid-solvent-free reaction conditions, the operation in aqueous medium with a rare hydroxylating role of water, with high selectivities, and yields of carboxylic acids. Taken together, these conditions correspond to the mildest and the most efficient method so far reported for the oxidative functionalisation of gaseous alkanes.

19.
Inorg Chem ; 49(14): 6390-2, 2010 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-20545321

RESUMEN

New water-soluble 1D and 3D Cu(II)/Na coordination polymers 1-3 bearing unprecedented [Cu(4)(Hbes)(4)] cores have been easily generated by aqueous-medium self-assembly and fully characterized, thus opening up the use of the common biological buffer H(3)bes, (HO(3)SCH(2)CH(2))N(CH(2)CH(2)OH)(2), in synthetic coordination chemistry. Apart from representing the first isolated and structurally characterized coordination compounds derived from H(3)bes, 1-3 show a remarkable promoting effect in the mild aqueous-medium hydrocarboxylation, by CO and H(2)O, of gaseous alkanes (C(3)H(8) and n-C(4)H(10)) to the corresponding carboxylic acids, which are obtained in up to 95% yields based on the alkane.


Asunto(s)
Alcanos/química , Complejos de Coordinación/química , Cobre/química , Polímeros/química , Sodio/química , Ácidos Carboxílicos/química , Cristalografía por Rayos X , Solubilidad , Agua/química
20.
Dalton Trans ; 49(21): 7197-7209, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32418999

RESUMEN

This study reports the application of an aromatic tricarboxylic acid, 2,5-di(4-carboxylphenyl)nicotinic acid (H3dcna) as a versatile and unexplored organic building block for assembling a new series of metal(ii) (M = Co, Ni, Zn, Fe, and Mn) complexes and coordination polymers, namely [M(Hdcna)(phen)2(H2O)]·H2O (M = Co (1), Ni (2)), [Zn(µ-Hdcna)(phen)]n (3), [Co(µ-Hdcna)(bipy)(H2O)2]n·nH2O (4), [Zn2(µ-Hdcna)2(bipy)2(H2O)4]·6H2O (5), [Zn(µ3-Hdcna)(H2biim)]n (6), [Ni2(Hdcna)2(µ-bpb)(bpb)2(H2O)4] (7), [Fe(µ4-Hdcna)(µ-H2O)]n·nH2O (8), and [Mn3(µ5-dcna)2(bipy)2(H2O)2]n·2nH2O (9). Such a diversity of products was hydrothermally prepared from the corresponding metal(ii) salts, H3dcna as a principal multifunctional ligand, and N-donor mediators of crystallization (1,10-phenanthroline, phen; 2,2'-bipyridine, bipy; 2,2'-biimidazole, H2biim; or 1,4-bis(pyrid-4-yl)benzene, bpb). The obtained products 1-9 were fully characterized by standard methods (elemental analysis, FTIR, TGA, PXRD) and the structures were established by single-crystal X-ray diffraction. These vary from the discrete monomers (1, 2) and dimers (5, 7) to the 1D (3, 4, 6) and 2D (8, 9) coordination polymers (CPs). Structural and topological characteristics of hydrogen-bonded or metal-organic architectures in 1-9 were highlighted, revealing that their structural multiplicity depends on the type of metal(ii) source and crystallization mediator. Thermal stability as well as luminescent, magnetic, or catalytic properties were explored for selected compounds. In particular, the zinc(ii) derivatives 3, 5, and 6 were applied as efficient heterogeneous catalysts for the cyanosilylation of aldehydes with trimethylsilyl cyanide at room temperature. The catalytic reactions were optimized by tuning the different reaction parameters (solvent composition, time, catalyst loading) and the substrate scope was also explored. Compound 5 revealed superior catalytic activity leading to up to 75% product yields, while maintaining its original performance upon recycling for at least four reaction cycles. Finally, the obtained herein products represent the unique examples of coordination compounds derived from H3dcna, thus opening up the use of this multifunctional tricarboxylic acid for generating complexes and coordination polymers with interesting structures and functional properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA