Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Analyst ; 141(4): 1421-33, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26783561

RESUMEN

We have examined the in situ detection of a single-nucleotide KRAS mutation in urine using a (Pb(Mg1/3Nb2/3)O3)0.65(PbTiO3)0.35 (PMN-PT) piezoelectric plate sensor (PEPS) coated with a 17-nucleotide (nt) locked nucleic acid (LNA) probe DNA complementary to the KRAS mutation. To enhance the in situ mutant (MT) DNA detection specificity against the wild type (WT), detection was carried out in a flow with a flow rate of 4 mL min(-1) and at 63 °C with the PEPS vertically situated at the center of the flow in which both the temperature and the flow impingement force discriminated the wild type. Under such conditions, PEPS was shown to specifically detect KRAS MT in situ with 60 copies per mL analytical sensitivity in a background of clinically-relevant 1000-fold more WT in 30 min without DNA isolation, amplification, or labeling. For validation, this detection was followed with detection in a mixture of blue MT fluorescent reporter microspheres (FRMs) (MT FRMs) that bound to only the captured MT and orange WT FRMs that bound to only the captured WT. Microscopic examinations showed that the captured blue MT FRMs still outnumbered the orange WT FRMs by a factor of 4 to 1 even though WT was 1000-fold of MT in urine. Finally, multiplexed specific mutation detection was demonstrated using a 6-PEPS array each with a probe DNA targeting one of the 6 codon-12 KRAS mutations.


Asunto(s)
Técnicas Biosensibles/métodos , Mutación Puntual , Polimorfismo de Nucleótido Simple , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/orina , Secuencia de Bases , Humanos , Sondas de Oligonucleótidos/química , Sondas de Oligonucleótidos/genética , Oligonucleótidos/química , Oligonucleótidos/genética
2.
Analyst ; 140(5): 1590-8, 2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25599103

RESUMEN

We have examined in situ detection of hepatitis B virus 1762T/1764A double mutation (HBVDM) in urine using a (Pb(Mg(1/3)Nb(2/3))O3)(0.65)(PbTiO3)(0.35) (PMN-PT) piezoelectric plate sensor (PEPS) coated with a 16-nucleotide (nt) probe DNA (pDNA) complementary to the HBVDM. The in situ mutation (MT) detection was carried out in a flow with the PEPS vertically situated at the center of the flow in a background of wild type (WT). For validation, this detection was followed by detection in the mixture of MT fluorescent reporter microspheres (FRMs) (MT FRMs) and WT FRMs that emitted different fluorescence colours and were designed to specifically bind to MT and WT, respectively. At 30 °C and 4 ml min(-1), a PEPS was shown to specifically detect HBVDM in situ with 60 copies ml(-1) analytical sensitivity in a background of clinically-relevant 250-fold more WT in 30 min without DNA isolation, amplification, or labelling as validated by the visualization of the captured MT FRMs and WT FRMs following FRM detection where the captured MT FRMs outnumbered the WT FRMs by a factor of 5 to 1.


Asunto(s)
Técnicas Biosensibles/métodos , Análisis Mutacional de ADN/métodos , ADN Viral/orina , Virus de la Hepatitis B/aislamiento & purificación , Hepatitis B/diagnóstico , Mutación/genética , ADN Viral/genética , Fluorescencia , Genotipo , Hepatitis B/genética , Hepatitis B/virología , Virus de la Hepatitis B/genética , Humanos , Microesferas , Reacción en Cadena de la Polimerasa
3.
Analyst ; 139(11): 2754-63, 2014 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-24759937

RESUMEN

We have examined real-time, in situ hybridization detection of target DNA (tDNA) in a buffer solution and in urine using 8 µm-thick lead magnesium niobate-lead titanate (PMN-PT) piezoelectric plate sensors (PEPSs) about 1.1-1.2 mm long and 0.45 mm wide with improved 3-mercaptopropyltrimethoxysilane (MPS) insulation and a new multiple-parabola (>50) resonance peak position fitting algorithm. With probe DNA (pDNA) immobilized on the PEPS surface and by monitoring the first width extension mode (WEM) resonance frequency shift we detected tDNA in real time at concentration as low as 1 × 10(-19) M in urine (100 zM) with a signal to noise ratio (SNR) of 13 without DNA isolation and amplification at room temperature in 30 min. The present multiple-parabola fitting algorithm increased the detection of SNR by about 10 times compared to those obtained using the raw data and by about 5 times compared to those obtained using single parabola fitting. The detection was validated by in situ follow-up detection and subsequent visualization of fluorescent reporter microspheres (FRMs) coated with reporter DNA complementary to the tDNA but different from the probe pDNA.


Asunto(s)
Algoritmos , ADN/genética , Hibridación de Ácido Nucleico , Límite de Detección , Relación Señal-Ruido
4.
Analyst ; 138(20): 6117-26, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-23964355

RESUMEN

Detection of mutated (MT) deoxyribonucleic acid (DNA) amongst the wild type (WT) requires the probe DNA (pDNA) that is complementary to the MT to discriminate the WT by one or two nucleotide mismatches. Traditionally this is achieved by raising the temperature to above the melting temperature (Tm) of the WT (TWT) but below that of the MT (TMT). However, a raised temperature is also accompanied by a weakened binding of the MT to the pDNA which can reduce the detection sensitivity. In this study, we investigated flow as a way to enhance MT detection specificity at a lower temperature. Gold-coated glass (GCG) slides immobilized with pDNA complementary to the target MT were placed at the center of the flow cell. The detection was done by flowing MT or WT at various concentrations followed by flowing 10(5) ml(-1) fluorescent reporter microspheres (FRMs) that were 6 µm in size and coated with reporter DNA complementary to the MT or WT but different from the pDNA at various flow rates and temperatures. The detection of MT or WT was characterized by counting the FRMs captured on the GCG. Hepatitis B virus 1762/1764 double mutation (HBV DM) was the model MT and the TMT and TWT were 47 °C and 22 °C, respectively. It was shown that at room temperature, flow initially increased the binding of both the MT and WT at lower flow rates but decreased the binding at flow rates ≥4 ml min(-1) due to the increase in the flow-induced impingement force on the FRMs to overcome the binding of the MT and the WT to the GCG at higher flow rates. At ≥30 °C the decrease in binding of the WT with an increasing flow rate was more than that of the MT because 30 °C was above the TWT but still well below the TMT. As a result, the detection of MT at 30 °C with a flow rate of 4 ml min(-1) was more specific than at 35 °C without flow. These results indicate that flow can diminish WT binding at a lower temperature than without flow and allow MT detection to occur at a lower temperature with high specificity.


Asunto(s)
ADN/análisis , ADN/genética , Ambiente Controlado , Genes Reporteros/genética , Microesferas , Mutación/genética , Temperatura , Virus de la Hepatitis B/química , Virus de la Hepatitis B/genética
5.
Biomimetics (Basel) ; 8(1)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36975319

RESUMEN

The need for rapidly developed diagnostic tests has gained significant attention after the recent pandemic. Production of neutralizing antibodies for vaccine development or antibodies to be used in diagnostic tests usually require the usage of recombinant proteins representing the infectious agent. However, peptides that can mimic these recombinant proteins may be rapidly utilized, especially in emergencies such as the recent outbreak. Here, we report two peptides that mimic the receptor binding domain of the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and investigate their binding behavior against the corresponding human immunoglobulin G and immunoglobulin M (IgG and IgM) antibodies in a clinical sample using a quartz crystal microbalance (QCM) sensor. These peptides were immobilized on a QCM sensor surface, and their binding behavior was studied against a clinical serum sample that was previously determined to be IgG and IgM-positive. It was determined that designed peptides bind to SARS-CoV-2 antibodies in a clinical sample. These peptides might be useful for the detection of SARS-CoV-2 antibodies using different methods such as enzyme-linked immunosorbent assay (ELISA) or lateral flow assays. A similar platform might prove to be useful for the detection and development of antibodies in other infections.

6.
Biosens Bioelectron ; 130: 73-80, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30731348

RESUMEN

Current genetic detection methods require gene isolation, gene amplification and detection with a fluorescent-tagged probe. They typically require sophisticated equipment and expensive fluorescent probes, rendering them not widely available for rapid acute infection diagnoses at the point of care to ensure timely treatment of the diseases. Here we report a rapid genetic detection method that can detect the bacterial gene directly from patient stools using a piezoelectric plate sensor (PEPS) in conjunction with a continuous flow system with two temperature zones. With stools spiked with sodium dodecyl sulfate (SDS) in situ bacteria lysing and DNA denaturation occurred in the high-temperature zone whereas in situ specific detection of the denatured DNA by the PEPS occurred in the lower-temperature zone. The outcome was a rapid genetic detection method that directly detected bacterial genes from stool in < 40 min without the need of gene isolation, gene amplification, or expensive fluorescent tag but with polymerase chain reaction (PCR) sensitivity. In 40 blinded patient stools, it detected the toxin B gene of Clostridium difficile with 95% sensitivity and 95% specificity. The all-electrical, label-free nature of the detection further supports its potential as a low-cost genetic test that can be used at the point of care.


Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Toxinas Bacterianas/aislamiento & purificación , Técnicas Biosensibles , Clostridioides difficile/aislamiento & purificación , Heces/microbiología , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Clostridioides difficile/genética , Clostridioides difficile/patogenicidad , Humanos , Dodecil Sulfato de Sodio
7.
Methods Mol Biol ; 1572: 327-348, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28299698

RESUMEN

We have examined in situ detection of single-nucleotide KRAS mutations in urine using a (Pb(Mg1/3Nb2/3)O3)0.65(PbTiO3)0.35 (PMN-PT) piezoelectric plate sensor (PEPS) coated with a 17-nucleotide (nt) locked nucleic acid (LNA) probe DNA complementary to the KRAS mutation without DNA isolation and amplification. In situ mutant (MT) DNA in urine in a wild type (WT) background was carried out at a flow rate of 4 mL/min and at 63 °C with the PEPS vertically situated at the center of the flow. Both the temperature and the impingement flow force discriminated the wild type. Under these conditions PEPS was shown to specifically detect KRAS MT in situ within 30 min with an analytical sensitivity of 60 copies/mL in a clinically relevant background of WT with concentrations 1000-fold greater than that of MT without DNA isolation, amplification, or labeling. For validation, detection was performed in a mixture of blue MT fluorescent reporter microspheres (FRMs) (MT FRMs) that bound to only the captured MT, and orange WT FRMs that bound to only the captured WT. The captured blue MT FRMs still outnumbered the orange WT FRMs by a factor of 4-1 even though WT was 1000-fold of MT in urine, illustrating the specificity of the point mutation detection.


Asunto(s)
Técnicas Biosensibles/métodos , ADN Tumoral Circulante , Análisis Mutacional de ADN/métodos , Dosificación de Gen , Mutación , Mutación Puntual , Proteínas Proto-Oncogénicas p21(ras)/genética , ADN Tumoral Circulante/orina , Sondas de ADN , Humanos , Microscopía Fluorescente , Sensibilidad y Especificidad
8.
Biosens Bioelectron ; 43: 391-9, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23356996

RESUMEN

In this paper we have investigated real-time, in situ DNA hybridization detection using piezoelectric plate sensors (PEPSs) consisting of a highly piezoelectric lead magnesium niobate-lead titanate (PMN-PT) layer 8µm in thickness thinly coated with Cr/Au electrodes and electrically insulated with 3-mercaptopropyltrimethoxysilane (MPS) encapsulation. With probe complementary DNA (cDNA) immobilized on the PEPS surface and by monitoring the first longitudinal extension mode (LEM) resonance frequency shift of the PEPS we detected hybridization of the target DNA (tDNA) to the probe cDNA on the PEPS surface in real time at concentration 1.6×10(-18)M with a signal to noise ratio of 8 without isolation and amplification at room temperature in 30min in phosphate buffered saline (PBS) solution. The detection was validated in situ by two different methods: (1) the detection of fluorescently labeled microspheres coated with reporter cDNA complementary to the tDNA but different from the probe cDNA; (2) fluorescent visualization.


Asunto(s)
Técnicas Biosensibles/instrumentación , ADN/genética , Hibridación in Situ/instrumentación , Sistemas Microelectromecánicos/instrumentación , Sistemas de Computación , Diseño de Equipo , Análisis de Falla de Equipo , Técnicas de Amplificación de Ácido Nucleico , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA