Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
PLoS Biol ; 21(9): e3002260, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37683040

RESUMEN

Climate change has profound effects on infectious disease dynamics, yet the impacts of increased short-term temperature fluctuations on disease spread remain poorly understood. We empirically tested the theoretical prediction that short-term thermal fluctuations suppress endemic infection prevalence at the pathogen's thermal optimum. This prediction follows from a mechanistic disease transmission model analyzed using stochastic simulations of the model parameterized with thermal performance curves (TPCs) from metabolic scaling theory and using nonlinear averaging, which predicts ecological outcomes consistent with Jensen's inequality (i.e., reduced performance around concave-down portions of a thermal response curve). Experimental observations of replicated epidemics of the microparasite Ordospora colligata in Daphnia magna populations indicate that temperature variability had the opposite effect of our theoretical predictions and instead increase endemic infection prevalence. This positive effect of temperature variability is qualitatively consistent with a published hypothesis that parasites may acclimate more rapidly to fluctuating temperatures than their hosts; however, incorporating hypothetical effects of delayed host acclimation into the mechanistic transmission model did not fully account for the observed pattern. The experimental data indicate that shifts in the distribution of infection burden underlie the positive effect of temperature fluctuations on endemic prevalence. The increase in disease risk associated with climate fluctuations may therefore result from disease processes interacting across scales, particularly within-host dynamics, that are not captured by combining standard transmission models with metabolic scaling theory.


Asunto(s)
Enfermedades Transmisibles , Parásitos , Enfermedades Parasitarias , Animales , Daphnia , Temperatura , Fiebre
2.
J Anim Ecol ; 91(10): 2087-2102, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35900837

RESUMEN

Parasitism is expected to change in a warmer future, but whether warming leads to substantial increases in parasitism remains unclear. Understanding how warming effects on parasitism in individual hosts (e.g. parasite load) translate to effects on population-level parasitism (e.g. prevalence, R0 ) remains a major knowledge gap. We conducted a literature review and identified 24 host-parasite systems that had information on the temperature dependence of parasitism at both individual host and host population levels: 13 vector-borne systems and 11 environmentally transmitted systems. We found a strong positive correlation between the thermal optima of individual- and population-level parasitism, although several of the environmentally transmitted systems exhibited thermal optima >5°C apart between individual and population levels. Parasitism thermal optima were close to vector performance thermal optima in vector-borne systems but not hosts in environmentally transmitted systems, suggesting these thermal mismatches may be more common in certain types of host-parasite systems. We also adapted and simulated simple models for both types of transmission modes and found the same pattern across the two modes: thermal optima were more strongly correlated across scales when there were more traits linking individual- to population-level processes. Generally, our results suggest that information on the temperature dependence, and specifically the thermal optimum, at either the individual or population level should provide a useful-although not quantitatively exact-baseline for predicting temperature dependence at the other level, especially in vector-borne parasite systems. Environmentally transmitted parasitism may operate by a different set of rules, in which temperature dependence is decoupled in some systems, requiring the need for trait-based studies of temperature dependence at individual and population levels.


Asunto(s)
Interacciones Huésped-Parásitos , Parásitos , Animales , Simbiosis , Temperatura
3.
Ecol Lett ; 24(4): 829-846, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33501751

RESUMEN

Vector-borne diseases (VBDs) are embedded within complex socio-ecological systems. While research has traditionally focused on the direct effects of VBDs on human morbidity and mortality, it is increasingly clear that their impacts are much more pervasive. VBDs are dynamically linked to feedbacks between environmental conditions, vector ecology, disease burden, and societal responses that drive transmission. As a result, VBDs have had profound influence on human history. Mechanisms include: (1) killing or debilitating large numbers of people, with demographic and population-level impacts; (2) differentially affecting populations based on prior history of disease exposure, immunity, and resistance; (3) being weaponised to promote or justify hierarchies of power, colonialism, racism, classism and sexism; (4) catalysing changes in ideas, institutions, infrastructure, technologies and social practices in efforts to control disease outbreaks; and (5) changing human relationships with the land and environment. We use historical and archaeological evidence interpreted through an ecological lens to illustrate how VBDs have shaped society and culture, focusing on case studies from four pertinent VBDs: plague, malaria, yellow fever and trypanosomiasis. By comparing across diseases, time periods and geographies, we highlight the enormous scope and variety of mechanisms by which VBDs have influenced human history.


Asunto(s)
Malaria , Enfermedades Transmitidas por Vectores , Vectores de Enfermedades , Humanos
4.
Proc Biol Sci ; 288(1957): 20210811, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34428971

RESUMEN

Mathematical models of epidemics are important tools for predicting epidemic dynamics and evaluating interventions. Yet, because early models are built on limited information, it is unclear how long they will accurately capture epidemic dynamics. Using a stochastic SEIR model of COVID-19 fitted to reported deaths, we estimated transmission parameters at different time points during the first wave of the epidemic (March-June, 2020) in Santa Clara County, California. Although our estimated basic reproduction number ([Formula: see text]) remained stable from early April to late June (with an overall median of 3.76), our estimated effective reproduction number ([Formula: see text]) varied from 0.18 to 1.02 in April before stabilizing at 0.64 on 27 May. Between 22 April and 27 May, our model accurately predicted dynamics through June; however, the model did not predict rising summer cases after shelter-in-place orders were relaxed in June, which, in early July, was reflected in cases but not yet in deaths. While models are critical for informing intervention policy early in an epidemic, their performance will be limited as epidemic dynamics evolve. This paper is one of the first to evaluate the accuracy of an early epidemiological compartment model over time to understand the value and limitations of models during unfolding epidemics.


Asunto(s)
COVID-19 , Epidemias , Número Básico de Reproducción , Humanos , Modelos Teóricos , SARS-CoV-2
5.
PLoS Biol ; 16(2): e2004608, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29415043

RESUMEN

The complexity of host-parasite interactions makes it difficult to predict how host-parasite systems will respond to climate change. In particular, host and parasite traits such as survival and virulence may have distinct temperature dependencies that must be integrated into models of disease dynamics. Using experimental data from Daphnia magna and a microsporidian parasite, we fitted a mechanistic model of the within-host parasite population dynamics. Model parameters comprising host aging and mortality, as well as parasite growth, virulence, and equilibrium abundance, were specified by relationships arising from the metabolic theory of ecology. The model effectively predicts host survival, parasite growth, and the cost of infection across temperature while using less than half the parameters compared to modeling temperatures discretely. Our results serve as a proof of concept that linking simple metabolic models with a mechanistic host-parasite framework can be used to predict temperature responses of parasite population dynamics at the within-host level.


Asunto(s)
Daphnia/microbiología , Interacciones Microbiota-Huesped , Microsporidios/fisiología , Modelos Biológicos , Temperatura , Animales , Cambio Climático , Daphnia/fisiología , Investigación Empírica , Microsporidios/crecimiento & desarrollo , Microsporidios/patogenicidad , Dinámica Poblacional , Prueba de Estudio Conceptual , Virulencia
6.
Proc Biol Sci ; 287(1936): 20201526, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33049167

RESUMEN

Predicting the effects of seasonality and climate change on the emergence and spread of infectious disease remains difficult, in part because of poorly understood connections between warming and the mechanisms driving disease. Trait-based mechanistic models combined with thermal performance curves arising from the metabolic theory of ecology (MTE) have been highlighted as a promising approach going forward; however, this framework has not been tested under controlled experimental conditions that isolate the role of gradual temporal warming on disease dynamics and emergence. Here, we provide experimental evidence that a slowly warming host-parasite system can be pushed through a critical transition into an epidemic state. We then show that a trait-based mechanistic model with MTE functional forms can predict the critical temperature for disease emergence, subsequent disease dynamics through time and final infection prevalence in an experimentally warmed system of Daphnia and a microsporidian parasite. Our results serve as a proof of principle that trait-based mechanistic models using MTE subfunctions can predict warming-induced disease emergence in data-rich systems-a critical step towards generalizing the approach to other systems.


Asunto(s)
Cambio Climático , Interacciones Huésped-Parásitos , Parásitos , Animales , Daphnia , Ecología , Epidemias , Microsporidios , Temperatura
7.
Am Nat ; 193(5): 661-676, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31002572

RESUMEN

The metabolic theory of ecology (MTE) provides a general framework of allometric and thermal dependence that may be useful for predicting how climate change will affect disease spread. Using Daphnia magna and a microsporidian gut parasite, we conducted two experiments across a wide thermal range and fitted transmission models that utilize MTE submodels for transmission parameters. We decomposed transmission into contact rate and probability of infection and further decomposed probability of infection into a product of gut residence time (GRT) and per-parasite infection rate of gut cells. Contact rate generally increased with temperature and scaled positively with body size, whereas infection rate had a narrow hump-shaped thermal response and scaled negatively with body size. GRT increased with host size and was longest at extreme temperatures. GRT and infection rate inside the gut combined to create a 3.5 times higher probability of infection for the smallest relative to the largest individuals. Small temperature changes caused large differences in transmission. We also fit several alternative transmission models to data at individual temperatures. The more complex models-parasite antagonism or synergism and host heterogeneity-did not substantially improve the fit to the data. Our results show that transmission rate is the product of several distinct thermal and allometric functions that can be predicted continuously across temperature and host size using the MTE.


Asunto(s)
Transmisión de Enfermedad Infecciosa , Modelos Biológicos , Temperatura , Animales , Cambio Climático , Daphnia , Ecología , Microsporidios
8.
J Anim Ecol ; 88(9): 1379-1391, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31120552

RESUMEN

Parasitism and competition are both ubiquitous interactions in ecological communities. The ability of host species to interact directly via competition and indirectly through shared parasites suggests that host traits related to competition and parasitism are likely important in structuring communities and disease dynamics. Specifically, those host traits affecting competition and those mediating parasitism are often correlated either because of trade-offs (in resource acquisition or resource allocation) or condition dependence, yet the consequences of these trait relationships for community and epidemiological dynamics are poorly understood. We conducted a literature review of parasite-related host traits-competitive ability relationships. We found that transmission-competitive ability relationships were most often reported, and that superior competitors exhibited elevated transmission relative to their less-competitive counterparts in nearly 80% of the cases. We also found a significant number of virulence-competitive ability and parasite shedding-competitive ability relationships. We investigated these links by altering the relationship between host competitive ability and three parasite-related traits (transmission, virulence and parasite shedding rates) in a simple model, incorporating competitive asymmetries in a multi-host community. We show that these relationships can lead to a range of different communities. For example, depending on the strength and direction of these distinct trait relationships, we observed communities with anywhere from high parasite prevalence to complete parasite extinction, and either one, two or the maximum of three host species coexisting. Our results suggest that parasite-competitive ability relationships may be common in nature, that further integration of these relationships can produce novel and unexpected community and disease dynamics, and that generalizations may allow for the prediction of how parasitism and competition jointly structure disease and diversity in natural communities.


Asunto(s)
Interacciones Huésped-Parásitos , Parásitos , Simbiosis , Animales , Especificidad del Huésped , Parásitos/fisiología , Fenotipo , Virulencia
9.
Biol Lett ; 13(5)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28515331

RESUMEN

Trophic interactions are likely to change under climate warming. These interactions can be altered directly by changing consumption rates, or indirectly by altering growth rates and size asymmetries among individuals that in turn affect feeding. Understanding these processes is particularly important for intraspecific interactions, as direct and indirect changes may exacerbate antagonistic interactions. We examined the effect of temperature on activity rate, growth and intraspecific size asymmetries, and how these temperature dependencies affected cannibalism in Lestes congener, a damselfly with marked intraspecific variation in size. Temperature increased activity rates and exacerbated differences in body size by increasing growth rates. Increased activity and changes in body size interacted to increase cannibalism at higher temperatures. We argue that our results are likely to be general to species with life-history stages that vary in their temperature dependencies, and that the effects of climate change on communities may depend on the temperature dependencies of intraspecific interactions.


Asunto(s)
Odonata , Animales , Tamaño Corporal , Canibalismo , Cambio Climático , Temperatura
10.
11.
PLoS Negl Trop Dis ; 18(6): e0011836, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38857289

RESUMEN

The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis' thermal optimum at 21.7°C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic. We performed an extensive literature search for empirical data on the effect of temperature on physiological and epidemiological parameters regulating the free-living stages of S. mansoni and S. haematobium and their obligate host snails, i.e., Biomphalaria spp. and Bulinus spp., respectively. We derived nonlinear thermal responses fitted on these data to parameterize a mechanistic, process-based model of schistosomiasis. We then re-cast the basic reproduction number and the prevalence of schistosome infection as functions of temperature. We found that the thermal optima for transmission of S. mansoni and S. haematobium range between 23.1-27.3°C and 23.6-27.9°C (95% CI) respectively. We also found that the thermal optimum shifts toward higher temperatures as the human water contact rate increases with temperature. Our findings align with an extensive dataset of schistosomiasis prevalence in SSA. The refined nonlinear thermal-response model developed here suggests a more suitable current climate and a greater risk of increased transmission with future warming for more than half of the schistosomiasis suitable regions with mean annual temperature below the thermal optimum.


Asunto(s)
Schistosoma haematobium , Schistosoma mansoni , Temperatura , Animales , Humanos , Schistosoma haematobium/fisiología , Schistosoma mansoni/fisiología , África del Sur del Sahara/epidemiología , Biomphalaria/parasitología , Esquistosomiasis/transmisión , Esquistosomiasis/epidemiología , Esquistosomiasis mansoni/transmisión , Esquistosomiasis mansoni/epidemiología , Bulinus/parasitología , Esquistosomiasis Urinaria/transmisión , Esquistosomiasis Urinaria/epidemiología , Prevalencia
12.
medRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38826336

RESUMEN

The geographical range of schistosomiasis is affected by the ecology of schistosome parasites and their obligate host snails, including their response to temperature. Previous models predicted schistosomiasis' thermal optimum at 21.7 °C, which is not compatible with the temperature in sub-Saharan Africa (SSA) regions where schistosomiasis is hyperendemic. We performed an extensive literature search for empirical data on the effect of temperature on physiological and epidemiological parameters regulating the free-living stages of S. mansoni and S. haematobium and their obligate host snails, i.e., Biomphalaria spp. and Bulinus spp., respectively. We derived nonlinear thermal responses fitted on these data to parameterize a mechanistic, process-based model of schistosomiasis. We then re-cast the basic reproduction number and the prevalence of schistosome infection as functions of temperature. We found that the thermal optima for transmission of S. mansoni and S. haematobium range between 23.1-27.3 °C and 23.6-27.9 °C (95 % CI) respectively. We also found that the thermal optimum shifts toward higher temperatures as the human water contact rate increases with temperature. Our findings align with an extensive dataset of schistosomiasis prevalence in SSA. The refined nonlinear thermal-response model developed here suggests a more suitable current climate and a greater risk of increased transmission with future warming for more than half of the schistosomiasis suitable regions with mean annual temperature below the thermal optimum.

13.
Parasit Vectors ; 16(1): 11, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635782

RESUMEN

BACKGROUND: West Nile virus (WNV) is the leading cause of mosquito-borne illness in the continental USA. WNV occurrence has high spatiotemporal variation, and current approaches to targeted control of the virus are limited, making forecasting a public health priority. However, little research has been done to compare strengths and weaknesses of WNV disease forecasting approaches on the national scale. We used forecasts submitted to the 2020 WNV Forecasting Challenge, an open challenge organized by the Centers for Disease Control and Prevention, to assess the status of WNV neuroinvasive disease (WNND) prediction and identify avenues for improvement. METHODS: We performed a multi-model comparative assessment of probabilistic forecasts submitted by 15 teams for annual WNND cases in US counties for 2020 and assessed forecast accuracy, calibration, and discriminatory power. In the evaluation, we included forecasts produced by comparison models of varying complexity as benchmarks of forecast performance. We also used regression analysis to identify modeling approaches and contextual factors that were associated with forecast skill. RESULTS: Simple models based on historical WNND cases generally scored better than more complex models and combined higher discriminatory power with better calibration of uncertainty. Forecast skill improved across updated forecast submissions submitted during the 2020 season. Among models using additional data, inclusion of climate or human demographic data was associated with higher skill, while inclusion of mosquito or land use data was associated with lower skill. We also identified population size, extreme minimum winter temperature, and interannual variation in WNND cases as county-level characteristics associated with variation in forecast skill. CONCLUSIONS: Historical WNND cases were strong predictors of future cases with minimal increase in skill achieved by models that included other factors. Although opportunities might exist to specifically improve predictions for areas with large populations and low or high winter temperatures, areas with high case-count variability are intrinsically more difficult to predict. Also, the prediction of outbreaks, which are outliers relative to typical case numbers, remains difficult. Further improvements to prediction could be obtained with improved calibration of forecast uncertainty and access to real-time data streams (e.g. current weather and preliminary human cases).


Asunto(s)
Culicidae , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Humanos , Fiebre del Nilo Occidental/epidemiología , Salud Pública , Clima , Brotes de Enfermedades , Predicción
14.
Elife ; 102021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34402424

RESUMEN

The potential for adaptive evolution to enable species persistence under a changing climate is one of the most important questions for understanding impacts of future climate change. Climate adaptation may be particularly likely for short-lived ectotherms, including many pest, pathogen, and vector species. For these taxa, estimating climate adaptive potential is critical for accurate predictive modeling and public health preparedness. Here, we demonstrate how a simple theoretical framework used in conservation biology-evolutionary rescue models-can be used to investigate the potential for climate adaptation in these taxa, using mosquito thermal adaptation as a focal case. Synthesizing current evidence, we find that short mosquito generation times, high population growth rates, and strong temperature-imposed selection favor thermal adaptation. However, knowledge gaps about the extent of phenotypic and genotypic variation in thermal tolerance within mosquito populations, the environmental sensitivity of selection, and the role of phenotypic plasticity constrain our ability to make more precise estimates. We describe how common garden and selection experiments can be used to fill these data gaps. Lastly, we investigate the consequences of mosquito climate adaptation on disease transmission using Aedes aegypti-transmitted dengue virus in Northern Brazil as a case study. The approach outlined here can be applied to any disease vector or pest species and type of environmental change.


Asunto(s)
Adaptación Fisiológica , Aedes/fisiología , Cambio Climático , Mosquitos Vectores/fisiología , Temperatura , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Aedes/crecimiento & desarrollo , Aedes/virología , Animales , Dengue/transmisión , Mosquitos Vectores/crecimiento & desarrollo , Mosquitos Vectores/virología
15.
Ecol Evol ; 10(13): 6714-6722, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32724544

RESUMEN

Ecological communities are partly structured by indirect interactions, where one species can indirectly affect another by altering its interactions with a third species. In the absence of direct predation, nonconsumptive effects of predators on prey have important implications for subsequent community interactions. To better understand these interactions, we used a Daphnia-parasite-predator cue system to evaluate if predation risk affects Daphnia responses to a parasite. We investigated the effects of predator cues on two aspects of host-parasite interactions (susceptibility to infection and infection intensity), and whether or not these effects differed between sexes. Our results show that changes in response to predator cues caused an increase in the prevalence and intensity of parasite infections in female predator-exposed Daphnia. Importantly, the magnitude of infection risk depended on how long Daphnia were exposed to the cues. Additionally, heavily infected Daphnia that were constantly exposed to cues produced relatively more offspring. While males were ~5× less likely to become infected compared to females, we were unable to detect effects of predator cues on male Daphnia-parasite interactions. In sum, predators, prey, and their parasites can form complex subnetworks in food webs, necessitating a nuanced understanding of how nonconsumptive effects may mediate these interactions.

16.
medRxiv ; 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32511583

RESUMEN

Non-pharmaceutical interventions to combat COVID-19 transmission have worked to slow the spread of the epidemic but can have high socio-economic costs. It is critical we understand the efficacy of non-pharmaceutical interventions to choose a safe exit strategy. Many current models are not suitable for assessing exit strategies because they do not account for epidemic resurgence when social distancing ends prematurely (e.g., statistical curve fits) nor permit scenario exploration in specific locations. We developed an SEIR-type mechanistic epidemiological model of COVID-19 dynamics to explore temporally variable non-pharmaceutical interventions. We provide an interactive tool and code to estimate the transmission parameter, ß, and the effective reproduction number, R eff . We fit the model to Santa Clara County, California, where an early epidemic start date and early shelter-in-place orders could provide a model for other regions. As of April 22, 2020, we estimate an R eff of 0.982 (95% CI: 0.849 - 1.107) in Santa Clara County. After June 1 (the end-date for Santa Clara County shelter-in-place as of April 27), we estimate a shift to partial social distancing, combined with rigorous testing and isolation of symptomatic individuals, is a viable alternative to indefinitely maintaining shelter-in-place. We also estimate that if Santa Clara County had waited one week longer before issuing shelter-in-place orders, 95 additional people would have died by April 22 (95% CI: 7 - 283). Given early life-saving shelter-in-place orders in Santa Clara County, longer-term moderate social distancing and testing and isolation of symptomatic individuals have the potential to contain the size and toll of the COVID-19 pandemic in Santa Clara County, and may be effective in other locations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA