Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Chem Rev ; 122(8): 7840-7908, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-34491038

RESUMEN

Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.


Asunto(s)
Ácidos Nucleicos , Azúcares , Carbohidratos , Glicómica/métodos , Espectrometría de Masas/métodos , Polisacáridos/química
2.
J Phys Chem A ; 128(22): 4456-4466, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38771224

RESUMEN

Understanding the structural and dynamic properties of proton-bound complexes is crucial for elucidating fundamental aspects of chemical reactivity and molecular interactions. In this work, the proton-bound complex between dihydrogen phosphate and formate, and its deuterated counterparts, is investigated using IR action spectroscopy in helium droplets. Contrary to the initial expectation that the stronger phosphoric acid would donate a proton to formate, both experiment and theory show that all exchangeable protons are located in the phosphate moiety. The experimental spectra show good agreement with both scaled harmonic and VPT2 anharmonic calculations, indicating that anharmonic effects are small. Some H-bending modes of the nondeuterated complex are found to be sensitive to the helium environment. In the case of the partially deuterated complexes, the experiments indicate that internal dynamics leads to isomeric interconversion upon IR excitation.

3.
J Org Chem ; 88(9): 5543-5553, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37092271

RESUMEN

Ferrier reactions follow a mechanistic pathway whereby Lewis acid activation of a cyclic enol ether facilitates departure of an allylic leaving group to form a glycosyl Ferrier cation. Attack on the Ferrier cation provides a new acetal linkage concurrent with the transposition of the alkene moiety. The idiosyncratic outcomes of Ferrier reactions of seven-membered ring carbohydrate-based oxepines prompted an investigation of its corresponding septanosyl Ferrier cation. Experiments that characterized the ion, including gas-phase cryogenic IR spectroscopy matched with density functional theory-calculated spectra of candidate cation structures, as well as product analysis from solution-phase Ferrier reactions, are reported here. Results from both approaches revealed an inclination of the seven-membered ring cation to contract to five-membered ring structures. Gas-phase IR spectra matched best to calculated spectra of structures in which five-membered dioxolenium formation opened the oxepine ring. In the solution phase, an attack on the ion by water led to an acyclic enal that cyclized to a C-methylene-aldehydo arabinofuranoside species. Attack by allyl trimethylsilane, on the other hand, was diastereoselective and yielded a C-allyl septanoside.

4.
Phys Chem Chem Phys ; 25(36): 24783-24788, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37671576

RESUMEN

In past decades, hydrogen bonds involving organic fluorine have been a highly disputed topic. Obtaining clear evidence for the presence of fluorine-specific interactions is generally difficult because of their weak nature. Today, the existence of hydrogen bonds with organic fluorine is widely accepted and supported by numerous studies. However, strong bonds with short H⋯F distances remain scarce and are primarily found in designed model compounds. Using a combination of cryogenic gas-phase infrared spectroscopy and density functional theory, we here analyze a series of conformationally unrestrained fluorinated phenylalanine compounds as protonated species. The results suggest proximal NH+⋯F hydrogen bonds with an exceptionally close H⋯F distance (1.79 Å) in protonated ortho-fluorophenylalanine.

5.
Angew Chem Int Ed Engl ; 62(36): e202305694, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37329506

RESUMEN

Membrane proteins are challenging to analyze by native mass spectrometry (MS) as their hydrophobic nature typically requires stabilization in detergent micelles that are removed prior to analysis via collisional activation. There is however a practical limit to the amount of energy which can be applied, which often precludes subsequent characterization by top-down MS. To overcome this barrier, we have applied a modified Orbitrap Eclipse Tribrid mass spectrometer coupled to an infrared laser within a high-pressure linear ion trap. We show how tuning the intensity and time of incident photons enables liberation of membrane proteins from detergent micelles. Specifically, we relate the ease of micelle removal to the infrared absorption of detergents in both condensed and gas phases. Top-down MS via infrared multiphoton dissociation (IRMPD), results in good sequence coverage enabling unambiguous identification of membrane proteins and their complexes. By contrasting and comparing the fragmentation patterns of the ammonia channel with two class A GPCRs, we identify successive cleavage of adjacent amino acids within transmembrane domains. Using gas-phase molecular dynamics simulations, we show that areas prone to fragmentation maintain aspects of protein structure at increasing temperatures. Altogether, we propose a rationale to explain why and where in the protein fragment ions are generated.


Asunto(s)
Detergentes , Micelas , Espectrometría de Masas/métodos , Proteínas de la Membrana , Receptores Acoplados a Proteínas G
6.
J Am Chem Soc ; 144(44): 20258-20266, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36289569

RESUMEN

The stereoselective formation of 1,2-cis-glycosidic bonds is a major bottleneck in the synthesis of carbohydrates. We here investigate how the electron density in acyl protecting groups influences the stereoselectivity by fine-tuning the efficiency of remote participation. Electron-rich C4-pivaloylated galactose building blocks show an unprecedented α-selectivity. The trifluoroacetylated counterpart with electron-withdrawing groups, on the other hand, exhibits a lower selectivity. Cryogenic infrared spectroscopy in helium nanodroplets and density functional theory calculations revealed the existence of dioxolenium-type intermediates for this reaction, which suggests that remote participation of the pivaloyl protecting group is the origin of the high α-selectivity of the pivaloylated building blocks. According to these findings, an α-selective galactose building block for glycosynthesis is developed based on rational considerations and is subsequently employed in automated glycan assembly exhibiting complete stereoselectivity. Based on the obtained selectivities in the glycosylation reactions and the results from infrared spectroscopy and density functional theory, we suggest a mechanism by which these reactions could proceed.


Asunto(s)
Electrones , Galactosa , Galactosa/química , Estereoisomerismo , Glicosilación , Carbohidratos
7.
Anal Bioanal Chem ; 414(18): 5275-5285, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35147717

RESUMEN

Tandem mass spectrometry is arguably the most important analytical tool for structure elucidation of lipids and other metabolites. By fragmenting intact lipid ions, valuable structural information such as the lipid class and fatty acyl composition are readily obtainable. The information content of a fragment spectrum can often be increased by the addition of metal cations. In particular, the use of silver ions is deeply rooted in the history of lipidomics due to their propensity to coordinate both electron-rich heteroatoms and C = C bonds in aliphatic chains. Not surprisingly, coordination of silver ions was found to enable the distinction of sn-isomers in glycerolipids by inducing reproducible intensity differences in the fragment spectra, which could, however, not be rationalized. Here, we investigate the fragmentation behaviors of silver-adducted sn- and double bond glycerophospholipid isomers by probing fragment structures using cryogenic gas-phase infrared (IR) spectroscopy. Our results confirm that neutral headgroup loss from silver-adducted glycerophospholipids leads to dioxolane-type fragments generated by intramolecular cyclization. By combining high-resolution IR spectroscopy and computational modelling of silver-adducted fragments, we offer qualitative explanations for different fragmentation behaviors of glycerophospholipid isomers. Overall, the results demonstrate that gas-phase IR spectroscopy of fragment ions can significantly contribute to our understanding of lipid dissociation mechanisms and the influence of coordinating cations.


Asunto(s)
Fosfolípidos , Plata , Cationes , Glicerofosfolípidos/química , Fosfolípidos/química , Espectrofotometría Infrarroja
8.
European J Org Chem ; 2022(15): e202200255, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35915640

RESUMEN

Fluorination is a potent method to modulate chemical properties of glycans. Here, we study how C3- and C6-fluorination of glucosyl building blocks influence the structure of the intermediate of the glycosylation reaction, the glycosyl cation. Using a combination of gas-phase infrared spectroscopy and first-principles theory, glycosyl cations generated from fluorinated and non-fluorinated monosaccharides are structurally characterized. The results indicate that neighboring group participation of the C2-benzoyl protecting group is the dominant structural motif for all building blocks, correlating with the ß-selectivity observed in glycosylation reactions. The infrared signatures indicate that participation of the benzoyl group in enhanced by resonance effects. Participation of remote acyl groups such as Fmoc or benzyl on the other hand is unfavored. The introduction of the less bulky fluorine leads to a change in the conformation of the ring pucker, whereas the structure of the active dioxolenium site remains unchanged.

9.
Angew Chem Int Ed Engl ; 61(19): e202115481, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35231141

RESUMEN

Over the course of the COVID-19 pandemic, mRNA-based vaccines have gained tremendous importance. The development and analysis of modified RNA molecules benefit from advanced mass spectrometry and require sufficient understanding of fragmentation processes. Analogous to the degradation of RNA in solution by autohydrolysis, backbone cleavage of RNA strands was equally observed in the gas phase; however, the fragmentation mechanism remained elusive. In this work, autohydrolysis-like intermediates were generated from isolated RNA dinucleotides in the gas phase and investigated using cryogenic infrared spectroscopy in helium nanodroplets. Data from both experiment and density functional theory provide evidence for the formation of a five-membered cyclic phosphate intermediate and rule out linear or six-membered structures. Furthermore, the experiments show that another prominent condensed-phase reaction of RNA nucleotides can be induced in the gas phase: the tautomerization of cytosine. Both observed reactions are therefore highly universal and intrinsic properties of the investigated molecules.


Asunto(s)
COVID-19 , ARN , Humanos , Nucleótidos/química , Pandemias , Espectrofotometría Infrarroja/métodos
10.
J Am Chem Soc ; 143(36): 14827-14834, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34473927

RESUMEN

Mass spectrometry is routinely employed for structure elucidation of molecules. Structural information can be retrieved from intact molecular ions by fragmentation; however, the interpretation of fragment spectra is often hampered by poor understanding of the underlying dissociation mechanisms. For example, neutral headgroup loss from protonated glycerolipids has been postulated to proceed via an intramolecular ring closure but the mechanism and resulting ring size have never been experimentally confirmed. Here we use cryogenic gas-phase infrared (IR) spectroscopy in combination with computational chemistry to unravel the structures of fragment ions and thereby shed light on elusive dissociation mechanisms. Using the example of glycerolipid fragmentation, we study the formation of protonated five-membered dioxolane and six-membered dioxane rings and show that dioxolane rings are predominant throughout different glycerolipid classes and fragmentation channels. For comparison, pure dioxolane and dioxane ions were generated from tailor-made dehydroxyl derivatives inspired by natural 1,2- and 1,3-diacylglycerols and subsequently interrogated using IR spectroscopy. Furthermore, the cyclic structure of an intermediate fragment occurring in the phosphatidylcholine fragmentation pathway was spectroscopically confirmed. Overall, the results contribute substantially to the understanding of glycerolipid fragmentation and showcase the value of vibrational ion spectroscopy to mechanistically elucidate crucial fragmentation pathways in lipidomics.


Asunto(s)
Diglicéridos/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Lipidómica/métodos , Espectrofotometría Infrarroja/métodos
11.
Anal Bioanal Chem ; 413(14): 3643-3653, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33956167

RESUMEN

The position and configuration of carbon-carbon double bonds in unsaturated fatty acids is crucial for their biological functions and influences health and disease. However, double bond isomers are not routinely distinguished by classical mass spectrometry workflows. Instead, they require sophisticated analytical approaches usually based on chemical derivatization and/or instrument modification. In this work, a novel strategy to investigate fatty acid double bond isomers (18:1) without prior chemical treatment or modification of the ion source was implemented by non-covalent adduct formation in the gas phase. Fatty acid adducts with sodium, pyridinium, trimethylammonium, dimethylammonium, and ammonium cations were characterized by a combination of cryogenic gas-phase infrared spectroscopy, ion mobility-mass spectrometry, and computational modeling. The results reveal subtle differences between double bond isomers and confirm three-dimensional geometries constrained by non-covalent ion-molecule interactions. Overall, this study on fatty acid adducts in the gas phase explores new avenues for the distinction of lipid double bond isomers and paves the way for further investigations of coordinating cations to increase resolution.


Asunto(s)
Ácidos Grasos Insaturados/análisis , Gases/análisis , Iones/análisis , Isomerismo , Modelos Moleculares , Espectrofotometría Infrarroja/métodos
12.
Chemphyschem ; 21(17): 1905-1907, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32652759

RESUMEN

It has been reported that fragments produced by glycosidic bond breakage in mass spectrometry-based experiments can retain a memory of their anomeric configuration, which has major implications for glycan sequencing. Herein, we use cryogenic vibrational spectroscopy and ion mobility-mass spectrometry to study the structure of B-type fragments of protected galactosides. Cationic fragments were generated from glycosyl donors carrying trichloroacetimidate or thioethyl leaving groups of different anomeric configuration. The obtained infrared signatures indicate that the investigated fragments exhibit an identical structure, which suggests that there is no anomeric memory in B-type ions of fully protected monosaccharides.

13.
Angew Chem Int Ed Engl ; 59(15): 6166-6171, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31944510

RESUMEN

The stereoselective formation of 1,2-cis-glycosidic bonds is challenging. However, 1,2-cis-selectivity can be induced by remote participation of C4 or C6 ester groups. Reactions involving remote participation are believed to proceed via a key ionic intermediate, the glycosyl cation. Although mechanistic pathways were postulated many years ago, the structure of the reaction intermediates remained elusive owing to their short-lived nature. Herein, we unravel the structure of glycosyl cations involved in remote participation reactions via cryogenic vibrational spectroscopy and first principles theory. Acetyl groups at C4 ensure α-selective galactosylations by forming a covalent bond to the anomeric carbon in dioxolenium-type ions. Unexpectedly, also benzyl ether protecting groups can engage in remote participation and promote the stereoselective formation of 1,2-cis-glycosidic bonds.

14.
Angew Chem Int Ed Engl ; 59(32): 13638-13642, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32291895

RESUMEN

1-Deoxysphingolipids are a recently described class of sphingolipids that have been shown to be associated with several disease states including diabetic and hereditary neuropathy. The identification and characterization of 1-deoxysphingolipids and their metabolites is therefore highly important. However, exact structure determination requires a combination of sophisticated analytical techniques due to the presence of various isomers, such as ketone/alkenol isomers, carbon-carbon double-bond (C=C) isomers and hydroxylation regioisomers. Here we demonstrate that cryogenic gas-phase infrared (IR) spectroscopy of ionized 1-deoxysphingolipids enables the identification and differentiation of isomers by their unique spectroscopic fingerprints. In particular, C=C bond positions and stereochemical configurations can be distinguished by specific interactions between the charged amine and the double bond. The results demonstrate the power of gas-phase IR spectroscopy to overcome the challenge of isomer resolution in conventional mass spectrometry and pave the way for deeper analysis of the lipidome.


Asunto(s)
Esfingolípidos/análisis , Isomerismo , Espectrofotometría Infrarroja , Esfingolípidos/química
15.
Anal Chem ; 91(14): 9102-9110, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31251038

RESUMEN

Affinity photo-cross-linking coupled to mass spectrometry, using benzophenone (Bzp)-functionalized peptides, was used to study the noncovalent interactions of cell-penetrating peptides and lipid membranes. Using biomimetic lipid vesicles composed of saturated and unsaturated negatively charged lipids, DMPG (14:0), DPPG (16:0), DOPG (18:1 cis Δ9), 18:1 (trans Δ9) PG, and DLoPG (18:2 cis Δ9, 12), allowed observation of all the classical and less common reactivities of Bzp described in the literature by direct MS analysis: C═C double bond formation on saturated fatty acids, covalent adducts formation via classical C-C bond, and Paternò-Büchi oxetane formation followed or not by fragmentation (retro-Paternò-Büchi) as well as photosensitization of unsaturated lipids leading to lipid dimers. All these reactions can occur concomitantly in a single complex biological system: a membrane-active peptide inserted within a phospholipid bilayer. We also detect oxidation species due to the presence of radical oxygen species. This work represents a noteworthy improvement for the characterization of interacting partners using Bzp photo-cross-linking, and it shows how to exploit in an original way the different reactivities of Bzp in the context of a lipid membrane. We propose an analytical workflow for the interpretation of MS spectra, giving access to information on the CPP/lipid interaction at a molecular level such as depth of insertion or membrane fluidity in the CPP vicinity. An application of this workflow illustrates the role of cholesterol in the CPP/lipids interaction.


Asunto(s)
Benzofenonas/química , Péptidos de Penetración Celular/química , Reactivos de Enlaces Cruzados/química , Ácidos Grasos/análisis , Membrana Dobles de Lípidos/química , Secuencia de Aminoácidos , Benzofenonas/efectos de la radiación , Colesterol/química , Reactivos de Enlaces Cruzados/efectos de la radiación , Ácidos Grasos/química , Oxidación-Reducción/efectos de la radiación , Fosfolípidos/química , Espectrometría de Masas en Tándem , Rayos Ultravioleta
16.
iScience ; 27(2): 108785, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38303728

RESUMEN

Membrane proteins perform numerous critical functions in the cell, making many of them primary drug targets. However, their preference for a lipid environment makes them challenging to study using established solution-based methods. Here, we show that peptidiscs, a recently developed membrane mimetic, provide an ideal platform to study membrane proteins and their interactions with mass photometry (MP) in detergent-free conditions. The mass resolution for membrane protein complexes is similar to that achievable with soluble proteins owing to the low carrier heterogeneity. Using the ABC transporter BtuCD, we show that MP can quantify interactions between peptidisc-reconstituted membrane protein receptors and their soluble protein binding partners. Using the BAM complex, we further show that MP reveals interactions between a membrane protein receptor and a bactericidal antibody. Our results highlight the utility of peptidiscs for membrane protein characterization in detergent-free solution and provide a rapid and powerful platform for quantifying membrane protein interactions.

17.
Chempluschem ; 89(10): e202400340, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39031638

RESUMEN

Native mass spectrometry of membrane proteins relies on non-ionic detergents which protect the protein during transfer from solution into the gas phase. Once in the gas phase, the detergent micelle must be efficiently removed, which is usually achieved by collision-induced dissociation (CID). Recently, infrared multiple photon dissociation (IRMPD) has emerged as an alternative activation method for the analysis of membrane proteins, which has led to a growing interest in detergents that efficiently absorb infrared light. Here we investigate whether the absorption properties of synthetic detergents can be tailored by merging structural motifs of existing detergents into new hybrid detergents. We combine gas-phase infrared ion spectroscopy with density functional theory to investigate and rationalize the absorption properties of three established detergents and two hybrid detergents with fused headgroups. We show that, although the basic intramolecular interactions in the parent and hybrid detergents are similar, the three-dimensional structures differ significantly and so do the infrared spectra. Our results outline a roadmap for guiding the synthesis of tailored detergents with computational chemistry for future mass spectrometry applications.

18.
ACS Chem Biol ; 19(4): 953-961, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38566504

RESUMEN

Synaptotagmin-1 (Syt-1) is a calcium sensing protein that is resident in synaptic vesicles. It is well established that Syt-1 is essential for fast and synchronous neurotransmitter release. However, the role of Ca2+ and phospholipid binding in the function of Syt-1, and ultimately in neurotransmitter release, is unclear. Here, we investigate the binding of Ca2+ to Syt-1, first in the absence of lipids, using native mass spectrometry to evaluate individual binding affinities. Syt-1 binds to one Ca2+ with a KD ∼ 45 µM. Each subsequent binding affinity (n ≥ 2) is successively unfavorable. Given that Syt-1 has been reported to bind anionic phospholipids to modulate the Ca2+ binding affinity, we explored the extent that Ca2+ binding was mediated by selected anionic phospholipid binding. We found that phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and dioleoylphosphatidylserine (DOPS) positively modulated Ca2+ binding. However, the extent of Syt-1 binding to phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) was reduced with increasing [Ca2+]. Overall, we find that specific lipids differentially modulate Ca2+ binding. Given that these lipids are enriched in different subcellular compartments and therefore may interact with Syt-1 at different stages of the synaptic vesicle cycle, we propose a regulatory mechanism involving Syt-1, Ca2+, and anionic phospholipids that may also control some aspects of vesicular exocytosis.


Asunto(s)
Calcio , Fosfolípidos , Sinaptotagmina I , Calcio/metabolismo , Exocitosis/fisiología , Neurotransmisores/metabolismo , Fosfolípidos/metabolismo , Transmisión Sináptica/fisiología , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/metabolismo , Animales , Ratas
19.
J Am Soc Mass Spectrom ; 35(8): 1950-1958, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38950388

RESUMEN

Tandem mass spectrometry is routinely used for the structural analysis of organic molecules, but many fragmentation reactions are not well understood. Because several potential structures can correspond to a measured mass, the assignment of product ions is ambiguous using mass spectrometry alone. Here, we combine mass spectrometry with high-resolution gas-phase infrared spectroscopy and computational chemistry tools to identify product ion structures and derive collision-induced fragmentation mechanisms of the chromane derivatives Trolox and Methyltrolox. We find that protonated Trolox and Methyltrolox fragment identically via dehydration and decarbonylation, while deprotonated ions display substantially diverging reactivities. For deprotonated Methyltrolox, we observe unusual radical fragmentation reactions and suggest a [1,2]-Wittig rearrangement involving aryl migration in the gas phase. Overall, the combined experimental and theoretical approach presented here revealed complex proton dynamics and intramolecular rearrangement reactions, which expand our understanding on structure-reactivity relationships of isolated molecules in different protonation states.

20.
J Phys Chem Lett ; 14(50): 11313-11317, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38064287

RESUMEN

The notion of (anti)aromaticity is a successful concept in chemistry to explain the structure and stability of polycyclic hydrocarbons. Cyclopentadienyl and fluorenyl cations are among the most studied classical antiaromatic systems. In this work, fluorenyl cations are investigated by high-resolution gas-phase infrared spectroscopy in helium droplets. Bare fluorenyl cations are generated in the gas phase by electrospray ionization. After mass-to-charge selection, ions are captured in ultracold helium nanodroplets and probed by infrared spectroscopy using a widely tunable free-electron laser in the 600-1700 cm-1 range. The highly resolved cryogenic infrared spectra confirm, in combination with DFT computations, that all cations are present in their singlet states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA