RESUMEN
The role of death receptor signaling for pathogen control and infection-associated pathogenesis is multifaceted and controversial. Here, we show that during viral infection, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) modulates NK cell activity independently of its pro-apoptotic function. In mice infected with lymphocytic choriomeningitis virus (LCMV), Trail deficiency led to improved specific CD8+ T-cell responses, resulting in faster pathogen clearance and reduced liver pathology. Depletion experiments indicated that this effect was mediated by NK cells. Mechanistically, TRAIL expressed by immune cells positively and dose-dependently modulates IL-15 signaling-induced granzyme B production in NK cells, leading to enhanced NK cell-mediated T cell killing. TRAIL also regulates the signaling downstream of IL-15 receptor in human NK cells. In addition, TRAIL restricts NK1.1-triggered IFNγ production by NK cells. Our study reveals a hitherto unappreciated immunoregulatory role of TRAIL signaling on NK cells for the granzyme B-dependent elimination of antiviral T cells.
Asunto(s)
Células Asesinas Naturales , Virosis , Animales , Virus de la Coriomeningitis Linfocítica , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Ligando Inductor de Apoptosis Relacionado con TNF/genéticaRESUMEN
The oxidative phosphorylation (OXPHOS) system is intricately organized, with respiratory complexes forming super-assembled quaternary structures whose assembly mechanisms and physiological roles remain under investigation. Cox7a2l, also known as Scaf1, facilitates complex III and complex IV (CIII-CIV) super-assembly, enhancing energetic efficiency in various species. We examined the role of Cox7a1, another Cox7a family member, in supercomplex assembly and muscle physiology. Zebrafish lacking Cox7a1 exhibited reduced CIV2 formation, metabolic alterations, and non-pathological muscle performance decline. Additionally, cox7a1-/- hearts displayed a pro-regenerative metabolic profile, impacting cardiac regenerative response. The distinct phenotypic effects of cox7a1-/- and cox7a2l-/- underscore the diverse metabolic and physiological consequences of impaired supercomplex formation, emphasizing the significance of Cox7a1 in muscle maturation within the OXPHOS system.