Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Molecules ; 28(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37836842

RESUMEN

Milk-derived peptides are known to confer anti-inflammatory effects. We hypothesised that milk-derived cell-penetrating peptides might modulate inflammation in useful ways. Using computational techniques, we identified and synthesised peptides from the milk protein Alpha-S1-casein that were predicted to be cell-penetrating using a machine learning predictor. We modified the interpretation of the prediction results to consider the effects of histidine. Peptides were then selected for testing to determine their cell penetrability and anti-inflammatory effects using HeLa cells and J774.2 mouse macrophage cell lines. The selected peptides all showed cell penetrating behaviour, as judged using confocal microscopy of fluorescently labelled peptides. None of the peptides had an effect on either the NF-κB transcription factor or TNFα and IL-1ß secretion. Thus, the identified milk-derived sequences have the ability to be internalised into the cell without affecting cell homeostatic mechanisms such as NF-κB activation. These peptides are worthy of further investigation for other potential bioactivities or as a naturally derived carrier to promote the cellular internalisation of other active peptides.


Asunto(s)
Péptidos de Penetración Celular , FN-kappa B , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Péptidos de Penetración Celular/farmacología , Células HeLa , Leche/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Antiinflamatorios/farmacología
2.
J Immunol ; 202(5): 1521-1530, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30700584

RESUMEN

Hypoxia is a common and prominent feature of the microenvironment at sites of bacteria-associated inflammation in inflammatory bowel disease. The prolyl-hydroxylases (PHD1/2/3) and the asparaginyl-hydroxylase factor-inhibiting HIF are oxygen-sensing enzymes that regulate adaptive responses to hypoxia through controlling the activity of HIF and NF-κB-dependent transcriptional pathways. Previous studies have demonstrated that the pan-hydroxylase inhibitor dimethyloxalylglycine (DMOG) is effective in the alleviation of inflammation in preclinical models of inflammatory bowel disease, at least in part, through suppression of IL-1ß-induced NF-κB activity. TLR-dependent signaling in immune cells, such as monocytes, which is important in bacteria-driven inflammation, shares a signaling pathway with IL-1ß. In studies into the effect of pharmacologic hydroxylase inhibition on TLR-induced inflammation in monocytes, we found that DMOG selectively triggers cell death in cultured THP-1 cells and primary human monocytes at concentrations well tolerated in other cell types. DMOG-induced apoptosis was independent of increased caspase-3/7 activity but was accompanied by reduced expression of the inhibitor of apoptosis protein 1 (cIAP1). Based on these data, we hypothesize that pharmacologic inhibition of the HIF-hydroxylases selectively targets monocytes for cell death and that this may contribute to the anti-inflammatory activity of HIF-hydroxylase inhibitors.


Asunto(s)
Aminoácidos Dicarboxílicos/farmacología , Inflamación/tratamiento farmacológico , Oxigenasas de Función Mixta/antagonistas & inhibidores , Monocitos/efectos de los fármacos , Inhibidores de Prolil-Hidroxilasa/farmacología , Muerte Celular/efectos de los fármacos , Muerte Celular/inmunología , Células Cultivadas , Células HEK293 , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Oxigenasas de Función Mixta/inmunología , Oxigenasas de Función Mixta/metabolismo , Monocitos/inmunología , Monocitos/metabolismo
3.
Annu Rev Nutr ; 37: 77-102, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28826373

RESUMEN

Worldwide obesity rates have reached epidemic proportions and significantly contribute to the growing prevalence of metabolic diseases. Chronic low-grade inflammation, a hallmark of obesity, involves immune cell infiltration into expanding adipose tissue. In turn, obesity-associated inflammation can lead to complications in other metabolic tissues (e.g., liver, skeletal muscle, pancreas) through lipotoxicity and inflammatory signaling networks. Importantly, although numerous signaling pathways are known to integrate metabolic and inflammatory processes, the nucleotide-binding and oligomerization domain-like receptor, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome is now noted to be a key regulator of metabolic inflammation. The NLRP3 inflammasome can be influenced by various metabolites, including fatty acids. Specifically, although saturated fatty acids may promote NLRP3 inflammasome activation, monounsaturated fatty acids and polyunsaturated fatty acids have recently been shown to impede NLRP3 activity. Therefore, the NLRP3 inflammasome and associated metabolic inflammation have key roles in the relationships among fatty acids, metabolites, and metabolic disease. This review focuses on the ability of fatty acids to influence inflammation and the NLRP3 inflammasome across numerous metabolic tissues in the body. In addition, we explore some perspectives for the future, wherein recent work in the immunology field clearly demonstrates that metabolic reprogramming defines immune cell functionality. Although there is a paucity of information about how diet and fatty acids modulate this process, it is possible that this will open up a new avenue of research relating to nutrient-sensitive metabolic inflammation.


Asunto(s)
Ácidos Grasos , Inflamasomas/inmunología , Inflamación/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Transducción de Señal , Animales , Humanos , Inflamación/patología , Obesidad/inmunología , Obesidad/metabolismo , Obesidad/patología
4.
Biochem Soc Trans ; 45(4): 979-985, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28710289

RESUMEN

Metabolic inflammation is a very topical area of research, wherein aberrations in metabolic and inflammatory pathways probably contribute to atherosclerosis, insulin resistance (IR) and type 2 diabetes. Metabolic insults arising from obesity promote inflammation, which in turn impedes insulin signalling and reverse cholesterol transport (RCT). Key cells in the process are metabolically activated macrophages, which up-regulate both pro- and anti-inflammatory pathways in response to lipid spillover from adipocytes. Peroxisome proliferator-activated receptors and AMP-activated protein kinase (AMPK) are regulators of cellular homeostasis that influence both inflammatory and metabolic pathways. Dietary fats, such as saturated fatty acids (SFAs), can differentially modulate metabolic inflammation. Palmitic acid, in particular, is a well-characterized nutrient that promotes metabolic inflammation via the NLRP3 (the nod-like receptor containing a pyrin domain) inflammasome, which is partly attributable to AMPK inhibition. Conversely, some unsaturated fatty acids are less potent agonists of metabolic inflammation. For example, monounsaturated fatty acid does not reduce AMPK as potently as SFA and n-3 polyunsaturated fatty acids actively resolve inflammation via resolvins and protectins. Nevertheless, the full extent to which nutritional state modulates metabolic inflammation requires greater clarification.


Asunto(s)
Aterosclerosis/etiología , Diabetes Mellitus Tipo 2/etiología , Dieta/efectos adversos , Resistencia a la Insulina , Modelos Inmunológicos , Obesidad/etiología , Adipocitos/inmunología , Adipocitos/metabolismo , Adipocitos/patología , Animales , Aterosclerosis/inmunología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Regulación de la Expresión Génica , Humanos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Activación de Macrófagos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Obesidad/inmunología , Obesidad/metabolismo , Obesidad/patología
5.
J Frailty Sarcopenia Falls ; 7(2): 95-100, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35775090

RESUMEN

We evaluated predictors of the Clinical Frailty Scale (CFS) scored by an interdisciplinary team (Home FIRsT) performing comprehensive geriatric assessment (CGA) in our Emergency Department (ED). This was a retrospective observational study (service evaluation) utilising ED-based CGA data routinely collected by Home FIRsT between January and October 2020. A linear regression model was computed to establish independent predictors of CFS. This was complemented by a classification and regression tree (CRT) to evaluate the main predictors. There were 799 Home FIRsT episodes, of which 740 were unique patients. The CFS was scored on 658 (89%) (median 4, range 1-8; mean age 81 years, 61% women). Independent predictors of higher CFS were older age (p<0.001), history of dementia (p<0.001), mobility (p≤0.007), disability (p<0.001), and higher acuity of illness (p=0.009). Disability and mobility were the main classifiers in the CRT. Results suggest appropriate CFS scoring informed by functional baseline.

6.
Mol Nutr Food Res ; 60(11): 2421-2432, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27390025

RESUMEN

SCOPE: Activation of the nod-like receptor protein 3 (NLRP3) inflammasome is required for IL-1ß release and is a key component of obesity-induced inflammation and insulin resistance. This study hypothesized that supplementation with a casein hydrolysate (CH) would attenuate NLRP3 inflammasome mediated IL-1ß secretion in adipose tissue (AT) and improve obesity-induced insulin resistance. METHODS AND RESULTS: J774.2 macrophages were LPS primed (10 ng/mL) and stimulated with adenosine triphosphate (5 mM) to assess NLRP3 inflammasome activity. Pretreatment with CH (1 mg/mL; 48 h) reduced caspase-1 activity and decreased IL-1ß secretion from J774.2 macrophages in vitro. 3T3-L1 adipocytes cultured with conditioned media from CH-pretreated J774.2 macrophages demonstrated increased phosphorylated (p)AKT expression and improved insulin sensitivity. C57BL/6JOLaHsd mice were fed chow or high fat diet (HFD) for 12 wk ± CH resuspended in water (0.5% w/v). CH supplementation improved glucose tolerance in HFD-fed mice as determined by glucose tolerance test. CH supplementation increased insulin-stimulated pAKT protein levels in AT, liver, and muscle after HFD. Cytokine secretion was measured from AT and isolated bone marrow macrophages cultured ex vivo. CH supplementation attenuated IL-1ß, tumor necrosis factor alpha (TNF-α) and IL-6 secretion from AT and IL-1ß, IL-18, and TNF-α from bone marrow macrophages following adenosine triphosphate stimulation ex vivo. CONCLUSION: This novel CH partially protects mice against obesity-induced hyperglycemia coincident with attenuated IL-1ß secretion and improved insulin signaling.


Asunto(s)
Tejido Adiposo/metabolismo , Caseínas/farmacología , Inflamasomas/metabolismo , Obesidad/metabolismo , Células 3T3-L1 , Animales , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/dietoterapia , Dieta Alta en Grasa/efectos adversos , Hiperglucemia/metabolismo , Inflamación/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas NLR , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA