Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Biol Cell ; 7(5): 703-18, 1996 May.
Artículo en Inglés | MEDLINE | ID: mdl-8744945

RESUMEN

In eukaryotic cells, checkpoint genes cause arrest of cell division when DNA is damaged or when DNA replication is blocked. In this study of budding yeast checkpoint genes, we identify and characterize another role for these checkpoint genes after DNA damage-transcriptional induction of genes. We found that three checkpoint genes (of six genes tested) have strong and distinct roles in transcriptional induction in four distinct pathways of regulation (each defined by induction of specific genes). MEC1 mediates the response in three transcriptional pathways, RAD53 mediates two of these pathways, and RAD17 mediates but a single pathway. The three other checkpoint genes (including RAD9) have small (twofold) but significant roles in transcriptional induction in all pathways. One of the pathways that we identify here leads to induction of MEC1 and RAD53 checkpoint genes themselves. This suggests a positive feedback circuit that may increase the cell's ability to respond to DNA damage. We make two primary conclusions from these studies. First, MEC1 appears to be the key regulator because it is required for all responses (both transcriptional and cell cycle arrest), while other genes serve only a subset of these responses. Second, the two types of responses, transcriptional induction and cell cycle arrest, appear distinct because both require MEC1 yet only cell cycle arrest requires RAD9. These and other results were used to formulate a working model of checkpoint gene function that accounts for roles of different checkpoint genes in different responses and after different types of damage. The conclusion that the yeast MEC1 gene is a key regulator also has implications for the role of a putative human homologue, the ATM gene.


Asunto(s)
Proteínas de Ciclo Celular , Daño del ADN , Regulación de la Expresión Génica , Genes Fúngicos , Genes cdc/genética , Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae , Levaduras/genética , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/fisiología , Ciclo Celular , Quinasa de Punto de Control 2 , Proteínas de Unión al ADN , Retroalimentación , Proteínas Fúngicas/genética , Eliminación de Gen , Genes cdc/efectos de los fármacos , Genes cdc/efectos de la radiación , Péptidos y Proteínas de Señalización Intracelular , Modelos Genéticos , Proteínas Nucleares , Proteínas Quinasas/genética , Factores de Tiempo , Transcripción Genética
2.
Neurobiol Aging ; 26(5): 765-75, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15708451

RESUMEN

The gradual loss of striatal dopamine and dopaminergic neurons residing in the substantia nigra (SN) causes parkinsonism characterized by slow, halting movements, rigidity, and resting tremor when neuronal loss exceeds a threshold of approximately 80%. It is estimated that there is extensive compensation for several years prior to symptom onset, during which vulnerable neurons asynchronously die. Recent evidence would argue that much of the compensatory response of the nigrostriatal system is multimodal including both pre-synaptic and striatal mechanisms. Although parkinsonism may have multiple causes, the classic syndrome, Parkinson's disease (PD), is frequently modeled in small animals by repeated administration of the selective neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Because the MPTP model of PD recapitulates many of the known behavioral and pathological features of human PD, we asked whether the striatal cells of mice treated with MPTP in a semi-chronic paradigm enact a transcriptional program that would help elucidate the response to dopamine denervation. Our findings reveal a time-dependent dysregulation in the striatum of a set of genes whose products may impact both the viability and ability to communicate of dopamine neurons in the SN.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Cuerpo Estriado/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Intoxicación por MPTP/metabolismo , Análisis de Varianza , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Intoxicación por MPTP/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Componente Principal/métodos , Reproducibilidad de los Resultados
3.
FEBS Lett ; 400(3): 341-4, 1997 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-9009227

RESUMEN

Cystic fibrosis is characterized by an impaired cyclic adenosine 3,5-monophosphate (cAMP) activated Cl- conductance in parallel with an enhanced amiloride sensitive Na+ conductance (ENaC) of the respiratory epithelium. Very recently, acute downregulation of ENaC by the cystic fibrosis transmembrane conductance regulator (CFTR) was demonstrated in several studies. The mechanism, however, by which CFTR exerts its inhibitory effect on ENaC remains obscure. We demonstrate that cytosolic domains of human CFTR are sufficient to induce inhibition of rat epithelial Na+ currents (rENaC) when coexpressed in Xenopus oocytes and stimulated with 3-isobutyl-1-methylxanthine (IBMX). Moreover, mutations of CFTR, which occur in cystic fibrosis, abolish CFTR-dependent downregulation of rENaC. Yeast two hybrid analysis of CFTR domains and rENaC subunits suggest direct interaction between the proteins. Enhanced Na+ transport as found in the airways of cystic fibrosis patients is probably due to a lack of CFTR dependent downregulation of ENaC.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Bloqueadores de los Canales de Sodio , Sodio/metabolismo , 1-Metil-3-Isobutilxantina/farmacología , Amilorida/farmacología , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Citoplasma/química , Regulación hacia Abajo , Genes Reporteros , Humanos , Meglumina/farmacología , Mutación , Técnicas de Placa-Clamp , Inhibidores de Fosfodiesterasa/farmacología , Ratas , Proteínas Recombinantes de Fusión , Canales de Sodio/metabolismo , Transformación Genética , Xenopus
4.
Immunol Lett ; 19(4): 341-9, 1988 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-3149624

RESUMEN

We have carried out an analysis of the serological and molecular diversity of a panel of monoclonal anti-DNA autoantibodies and serum autoantibodies from NZB and (NZB X NZW) F1 mice, in an attempt to obtain insights into the mechanisms responsible for the development of systemic autoimmune disease. Our data show that the autoantibodies are quite diverse. A dominant, binding-site idiotope on one of our monoclonal autoantibodies is expressed at variable levels in anti-DNA binding antibodies in the sera of both NZB and (NZB X NZW) F1 mice, but on none of the other monoclonal autoantibodies in our panel. We have cloned and sequenced the heavy chain variable region (VH) gene of one anti-DNA hybridoma and by hybridization have determined the VH and V kappa gene segments expressed by 14 others. All of the autoantibodies express members of known V gene subfamilies. A total of four different VH and at least six V kappa subfamilies are expressed by the hybridomas. Thus, a broad spectrum of the total murine Ig repertoire is represented in the anti-DNA autoantibodies present in these strains.


Asunto(s)
Autoanticuerpos/genética , ADN/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales , Diversidad de Anticuerpos , Secuencia de Bases , Clonación Molecular , Genes de Inmunoglobulinas , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Cadenas kappa de Inmunoglobulina/genética , Ratones , Ratones Endogámicos NZB , Datos de Secuencia Molecular
6.
Yeast ; 11(13): 1311-6, 1995 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-8553703

RESUMEN

While sequencing a region of chromosome IV adjacent to the checkpoint gene MEC3, we identified a gene we call GUF1 (GTPase of Unknown Function), which predicts a 586 amino acid GTPase of the elongation factor-type class. The predicted Guf1p protein bears striking sequence similarity to both LepA from Escherichia coli (43% identical) and LK1236.1 from Caenorhabditis elegans (42% identical). Analysis of both a guf1 delta deletion and a putative constitutive-activating mutant (GUF1HG) revealed that GUF1 is not essential nor did mutant cells reveal any marked phenotype.


Asunto(s)
GTP Fosfohidrolasas/genética , Genes Fúngicos , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Evolución Biológica , Secuencia Conservada , Datos de Secuencia Molecular , Saccharomyces cerevisiae/enzimología
7.
Genes Dev ; 8(6): 652-65, 1994 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-7926756

RESUMEN

In eukaryotes a cell-cycle control termed a checkpoint causes arrest in the S or G2 phases when chromosomes are incompletely replicated or damaged. Previously, we showed in budding yeast that RAD9 and RAD17 are checkpoint genes required for arrest in the G2 phase after DNA damage. Here, we describe a genetic strategy that identified four additional checkpoint genes that act in two pathways. Both classes of genes are required for arrest in the G2 phase after DNA damage, and one class of genes is also required for arrest in S phase when DNA replication is incomplete. The G2-specific genes include MEC3 (for mitosis entry checkpoint), RAD9, RAD17, and RAD24. The genes common to both S phase and G2 phase pathways are MEC1 and MEC2. The MEC2 gene proves to be identical to the RAD53 gene. Checkpoint mutants were identified by their interactions with a temperature-sensitive allele of the cell division cycle gene CDC13; cdc13 mutants arrested in G2 and survived at the restrictive temperature, whereas all cdc13 checkpoint double mutants failed to arrest in G2 and died rapidly at the restrictive temperature. The cell-cycle roles of the RAD and MEC genes were examined by combination of rad and mec mutant alleles with 10 cdc mutant alleles that arrest in different stages of the cell cycle at the restrictive temperature and by the response of rad and mec mutant alleles to DNA damaging agents and to hydroxyurea, a drug that inhibits DNA replication. We conclude that the checkpoint in budding yeast consists of overlapping S-phase and G2-phase pathways that respond to incomplete DNA replication and/or DNA damage and cause arret of cells before mitosis.


Asunto(s)
Proteínas de Ciclo Celular , Reparación del ADN , Replicación del ADN , Mitosis/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Alelos , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Mapeo Cromosómico , Cruzamientos Genéticos , Proteínas Fúngicas/genética , Genes Fúngicos , Genes Letales , Genes Sintéticos , Genotipo , Hidroxiurea/farmacología , Saccharomyces cerevisiae/citología
8.
Immunogenetics ; 29(3): 191-201, 1989.
Artículo en Inglés | MEDLINE | ID: mdl-2564371

RESUMEN

We have studied the restriction fragment length polymorphisms (RFLPs) found in the germline T-cell receptor genes of 25 inbred Mus musculus strains and 8 wild Mus species. Included in the inbred mice tested were several strains which spontaneously develop systemic autoimmune disease. Extensive polymorphism was evident for the variable (V) gene segments of the alpha gene family for both the inbred strains and wild mouse species. Changes in the total number of bands hybridizing with probes for V alpha gene segments suggest that members of a V alpha gene segment subfamily are not closely linked, but are interspersed with members of other subfamilies; that expansion and contraction of the multimembered subfamilies may be an important diversifying factor. Our data obtained with beta gene probes revealed genomic diversity that is much more limited than that seen for the alpha locus. Analysis of inbred mice with probes for the gamma gene locus revealed some RFLPs, but little evidence of expansion or contraction in the numbers of gene segments. Among the autoimmune mice, NZW, NZB, and BXSB/MpJ all display distinctive differences with alpha gene probes. NZW mice have a large deletion of the beta gene family, which has been reported previously. We found no differences to distinguish the MRL/MpJ lpr/lpr mice from non-autoimmune strains.


Asunto(s)
Muridae/genética , Polimorfismo Genético , Polimorfismo de Longitud del Fragmento de Restricción , Receptores de Antígenos de Linfocitos T/genética , Animales , Animales Salvajes , Haplotipos , Ratones , Ratones Endogámicos/genética , Familia de Multigenes
9.
Arch Biochem Biophys ; 390(2): 195-205, 2001 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-11396922

RESUMEN

Many cystic fibrosis disease-associated mutations cause a defect in the biosynthetic processing and trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Yeast mutants, defective at various steps of the secretory pathway, have been used to dissect the mechanisms of biosynthetic processing and intracellular transport of several proteins. To exploit these yeast mutants, we have employed an expression system in which the CFTR gene is driven by the promoter of a structurally related yeast ABC protein, Pdr5p. Pulse-chase experiments revealed a turnover rate similar to that of nascent CFTR in mammalian cells. Immunofluorescence microscopy showed that most CFTR colocalized with the endoplasmic reticulum (ER) marker protein Kar2p and not with a vacuolar marker. Degradation was not influenced by the vacuolar protease mutants Pep4p and Prb1p but was sensitive to the proteasome inhibitor lactacystin beta-lactone. Blocking ER-to-Golgi transit with the sec18-1 mutant had little influence on turnover indicating that it occurred primarily in the ER compartment. Degradation was slowed in cells deficient in the ER degradation protein Der3p as well as the ubiquitin-conjugating enzymes Ubc6p and Ubc7p. Finally a mutation (sec61-2) in the translocon protein Sec61p that prevents retrotranslocation across the ER membrane also blocked degradation. These results indicate that whereas approximately 75% of nascent wild-type CFTR is degraded at the ER of mammalian cells virtually all of the protein meets this fate on heterologous expression in Saccharomyces cerevisiae.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/biosíntesis , Saccharomyces cerevisiae/metabolismo , Cisteína Endopeptidasas/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Técnica del Anticuerpo Fluorescente , Glicosilación , Proteínas Fluorescentes Verdes , Humanos , Immunoblotting , Proteínas Luminiscentes/metabolismo , Glicoproteínas de Membrana/biosíntesis , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana , Complejos Multienzimáticos/metabolismo , Mutación , Pruebas de Precipitina , Complejo de la Endopetidasa Proteasomal , Canales de Translocación SEC , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA