Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Am J Hum Genet ; 102(2): 321-329, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29394991

RESUMEN

Early-onset epileptic encephalopathies, including West syndrome (WS), are a group of neurological disorders characterized by developmental impairments and intractable seizures from early infancy. We have now identified biallelic CNPY3 variants in three individuals with WS; these include compound-heterozygous missense and frameshift variants in a family with two affected siblings (individuals 1 and 2) and a homozygous splicing variant in a consanguineous family (individual 3). All three individuals showed hippocampal malrotation. In individuals 1 and 2, electroencephalography (EEG) revealed characteristic fast waves and diffuse sharp- and slow-wave complexes. The fast waves were clinically associated with seizures. CNPY3 encodes a co-chaperone in the endoplasmic reticulum and regulates the subcellular distribution and responses of multiple Toll-like receptors. The amount of CNPY3 in lymphoblastoid cells derived from individuals 1 and 2 was severely lower than that in control cells. Cnpy3-knockout mice exhibited spastic or dystonic features under resting conditions and hyperactivity and anxiolytic behavior during the open field test. Also, their resting EEG showed enhanced activity in the fast beta frequency band (20-35 Hz), which could mimic the fast waves in individuals 1 and 2. These data suggest that CNPY3 and Cnpy3 perform essential roles in brain function in addition to known Toll-like receptor-dependent immune responses.


Asunto(s)
Chaperonas Moleculares/genética , Mutación , Convulsiones/genética , Espasmos Infantiles/genética , Adolescente , Secuencia de Aminoácidos , Animales , Niño , Consanguinidad , Electroencefalografía , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Familia , Femenino , Expresión Génica , Heterocigoto , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Hipocampo/fisiopatología , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Noqueados , Convulsiones/diagnóstico por imagen , Convulsiones/fisiopatología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Hermanos , Espasmos Infantiles/diagnóstico por imagen , Espasmos Infantiles/fisiopatología
2.
J Neurochem ; 154(1): 25-40, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31587290

RESUMEN

Vanishing white matter disease (VWM) is an autosomal recessive neurological disorder caused by mutation(s) in any subunit of eukaryotic translation initiation factor 2B (eIF2B), an activator of translation initiation factor eIF2. VWM occurs with mutation of the genes encoding eIF2B subunits (EIF2B1, EIF2B2, EIF2B3, EIF2B4, and EIF2B5). However, little is known regarding the underlying pathogenetic mechanisms or how to treat patients with VWM. Here we describe the identification and detailed analysis of a new spontaneous mutant mouse harboring a point mutation in the Eif2b5 gene (p.Ile98Met). Homozygous Eif2b5I98M mutant mice exhibited a small body, abnormal gait, male and female infertility, epileptic seizures, and a shortened lifespan. Biochemical analyses indicated that the mutant eIF2B protein with the Eif2b5I98M mutation decreased guanine nucleotide exchange activity on eIF2, and the level of the endoplasmic reticulum stress marker activating transcription factor 4 was elevated in the 1-month-old Eif2b5I98M brain. Histological analyses indicated up-regulated glial fibrillary acidic protein immunoreactivity in the astrocytes of the Eif2b5I98M forebrain and translocation of Bergmann glia in the Eif2b5I98M cerebellum, as well as increased mRNA expression of an endoplasmic reticulum stress marker, C/EBP homologous protein. Disruption of myelin and clustering of oligodendrocyte progenitor cells were also indicated in the white matter of the Eif2b5I98M spinal cord at 8 months old. Our data show that Eif2b5I98M mutants are a good model for understanding VWM pathogenesis and therapy development. Cover Image for this issue: doi: 10.1111/jnc.14751.


Asunto(s)
Modelos Animales de Enfermedad , Factor 2B Eucariótico de Iniciación/genética , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Neuroglía/patología , Animales , Encéfalo/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación Puntual
3.
Epilepsia ; 58(4): e59-e63, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28195308

RESUMEN

Hypothalamic hamartoma (HH), composed of neurons and glia without apparent cytologic abnormalities, is a rare developmental malformation in humans. Patients with HH often have characteristic medically refractory gelastic seizures, and intrinsic epileptogenesis within the lesions has been speculated. Herein we provide evidence to suggest that in HH neurons, Ca2+ permeability through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors is aberrantly elevated. In needle biopsy specimens of HH tissue, field potential recordings demonstrated spontaneous epileptiform activities similar to those observed in other etiologically distinct epileptogenic tissues. In HH, however, these activities were clearly abolished by application of Joro Spider Toxin (JSTX), a specific inhibitor of the Ca2+ -permeable AMPA receptor. Consistent with these physiologic findings, the neuronal nuclei showed disappearance of adenosine deaminase acting on RNA 2 (ADAR2) immunoreactivity. Furthermore, examination of glutamate receptor 2 (GluA2) messenger RNA (mRNA) revealed that editing efficiency at the glutamine/arginine site was significantly low. These results suggest that neurons in HH may bear Ca2+ -permeable AMPA receptors due to dislocation of ADAR2.


Asunto(s)
Calcio/metabolismo , Epilepsia/etiología , Hamartoma/complicaciones , Enfermedades Hipotalámicas/complicaciones , Receptores AMPA/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Adolescente , Adulto , Niño , Electroencefalografía , Epilepsia/diagnóstico por imagen , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Hamartoma/diagnóstico por imagen , Humanos , Enfermedades Hipotalámicas/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Receptores AMPA/genética , Adulto Joven
4.
Ann Neurol ; 78(3): 375-86, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26018084

RESUMEN

OBJECTIVE: Focal cortical dysplasia (FCD) type IIb is a cortical malformation characterized by cortical architectural abnormalities, dysmorphic neurons, and balloon cells. It has been suggested that FCDs are caused by somatic mutations in cells in the developing brain. Here, we explore the possible involvement of somatic mutations in FCD type IIb. METHODS: We collected a total of 24 blood-brain paired samples with FCD, including 13 individuals with FCD type IIb, 5 with type IIa, and 6 with type I. We performed whole-exome sequencing using paired samples from 9 of the FCD type IIb subjects. Somatic MTOR mutations were identified and further investigated using all 24 paired samples by deep sequencing of the entire gene's coding region. Somatic MTOR mutations were confirmed by droplet digital polymerase chain reaction. The effect of MTOR mutations on mammalian target of rapamycin (mTOR) kinase signaling was evaluated by immunohistochemistry and Western blotting analyses of brain samples and by in vitro transfection experiments. RESULTS: We identified four lesion-specific somatic MTOR mutations in 6 of 13 (46%) individuals with FCD type IIb showing mutant allele rates of 1.11% to 9.31%. Functional analyses showed that phosphorylation of ribosomal protein S6 in FCD type IIb brain tissues with MTOR mutations was clearly elevated, compared to control samples. Transfection of any of the four MTOR mutants into HEK293T cells led to elevated phosphorylation of 4EBP, the direct target of mTOR kinase. INTERPRETATION: We found low-prevalence somatic mutations in MTOR in FCD type IIb, indicating that activating somatic mutations in MTOR cause FCD type IIb.


Asunto(s)
Encéfalo/patología , Malformaciones del Desarrollo Cortical del Grupo II/genética , Mutación/genética , Serina-Treonina Quinasas TOR/genética , Adolescente , Adulto , Niño , Femenino , Células HEK293 , Humanos , Masculino , Malformaciones del Desarrollo Cortical/diagnóstico , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical del Grupo II/diagnóstico
5.
Neuropathology ; 35(5): 401-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25950494

RESUMEN

Balloon cells are a pathognomonic cellular feature of various cortical malformations, including focal cortical dysplasia type IIb (FCD IIb), cortical tubers of tuberous sclerosis (TSC) and hemimegalencephaly (HME). In the present study, we investigated the immunohistochemical expression of p57/Kip2, a member of the Cip/Kip family of cyclin-dependent kinase inhibitory proteins, in balloon cells in surgical specimens taken from 26, 17 and six patients with FCD IIb, TSC and HME, respectively. Characteristic dot-like reactivity with a faint, intense, reticular and process-like pattern was confined to the proximal portion of the cytoplasmic processes of the cells. Immunoelectron microscopy revealed the p57/Kip2 reactivity on intermediate filaments in the proximal portion of the processes. The immunohistochemical profile appeared similar to that of CD34; however, a double immunofluorescence study demonstrated that no cells showed reactivity for both p57/Kip2 and CD34. The frequencies of the p57/Kip2-positive cells in FCD IIb and HME were significantly higher than those in TSC, suggesting that the balloon cells may be heterogeneous. These findings suggest some functional significance of the protein on the cytoplasmic processes of balloon cells and appear consistent with the notion that the cells are abnormally differentiated progenitor cells.


Asunto(s)
Corteza Cerebral/metabolismo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Epilepsia/metabolismo , Malformaciones del Desarrollo Cortical de Grupo I/metabolismo , Neuronas/metabolismo , Adolescente , Adulto , Corteza Cerebral/patología , Niño , Preescolar , Epilepsia/patología , Femenino , Humanos , Lactante , Masculino , Malformaciones del Desarrollo Cortical de Grupo I/patología , Persona de Mediana Edad , Neuronas/patología , Esclerosis Tuberosa/metabolismo , Esclerosis Tuberosa/patología , Adulto Joven
6.
Epilepsy Res ; 202: 107364, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38640591

RESUMEN

Focal cortical dysplasia (FCD) is an important etiology of focal epilepsy in children and adults. However, only a few preclinical models sufficiently reproduce the characteristic histopathologic features of FCD. To improve the success rate of clinical trials for antiseizure medications (ASMs) in patients with FCD, more human-relevant preclinical models are needed, and epileptic foci resected from patients are a powerful tool for this purpose. Here, we conducted ex vivo studies using epileptic foci resected from patients with FCD type II to evaluate the pharmacologic effects of the ASM candidate E2730, a selective uncompetitive inhibitor of γ-aminobutyric acid transporter 1. We used the same ex vivo assay system to assess carbamazepine (CBZ), an ASM often prescribed for focal epilepsy, as a reference. At the higher dose tested (200 µM), both E2730 and CBZ suppressed spontaneous epileptiform activities almost completely. At the lower dose (100 µM), CBZ reduced the area of brain tissue showing epileptiform activity, whereas E2730 significantly decreased the number of epileptiforms. These findings suggest that E2730-both as a single agent and in combination with CBZ-merits evaluation in clinical trials involving patients with FCD.


Asunto(s)
Anticonvulsivantes , Proteínas Transportadoras de GABA en la Membrana Plasmática , Adulto , Niño , Preescolar , Femenino , Humanos , Masculino , Anticonvulsivantes/farmacología , Encéfalo/efectos de los fármacos , Carbamazepina/farmacología , Relación Dosis-Respuesta a Droga , Epilepsia/tratamiento farmacológico , Displasia Cortical Focal/tratamiento farmacológico , Inhibidores de Recaptación de GABA/farmacología , Malformaciones del Desarrollo Cortical/tratamiento farmacológico , Malformaciones del Desarrollo Cortical de Grupo I/tratamiento farmacológico , Técnicas In Vitro
7.
Neuropathology ; 33(4): 469-74, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23384182

RESUMEN

Epilepsy is a chronic disorder characterized by abnormal spatiotemporal neural activities. To clarify its physiological mechanisms and associated morphological features, we investigated neuronal activities using the flavoprotein fluorescence imaging technique and histopathological changes in epileptogenic tissue resected from patients with epilepsy. We applied an imaging technique suitable for examining human brain slices, and as a consequence achieved sufficient responses with high reproducibility. Moreover, we detected significant alterations in neuronal morphology associated with the acquired responses. Therefore, this strategy is useful for gaining a better understanding of the pathomechanisms underlying intractable epilepsy.


Asunto(s)
Epilepsia/fisiopatología , Imagen Óptica/métodos , Flavoproteínas , Humanos
8.
Epilepsia ; 53(7): e127-31, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22642616

RESUMEN

Patients with periventricular nodular heterotopia (PVNH) often have severe epilepsy. However, it is unclear how the heterotopia contributes to epileptogenesis. Recently, electrophysiologic studies using intraoperative depth electrodes have indicated that interaction between the heterotopia and overlying cortex is crucial for seizure onset. We performed an in vitro physiologic study using slices of resected brain from a 22-year-old man with PVNH, who manifested medically refractory mesial temporal lobe epilepsy. Preoperative evaluation indicated that the right mesial temporal structure and PVNH were the epileptogenic focus. The resected tissue was immediately immersed in cold artificial cerebrospinal fluid, and then slices of the brain tissue including the heterotopic nodules and overlying hippocampus were prepared. We electrically stimulated the incubated slices, and the elicited neural activities were analyzed as changes in the flavoprotein fluorescence signals. When we stimulated either the heterotopic nodule or the overlying hippocampus, clear functional coupling of neural activities between these structures was observed. The coupling response evoked by stimulation of the subiculum and developing within the heterotopic nodule was enhanced by application of bicuculline. Therefore, activities of the hippocampus and the nodule are closely correlated.


Asunto(s)
Epilepsia Parcial Compleja/etiología , Epilepsia Parcial Compleja/patología , Hipocampo/patología , Heterotopia Nodular Periventricular/complicaciones , Electroencefalografía , Hipocampo/fisiopatología , Humanos , Imagen por Resonancia Magnética , Masculino , Heterotopia Nodular Periventricular/cirugía , Adulto Joven
9.
Neuropathology ; 32(2): 196-201, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21801236

RESUMEN

Epidermoid cysts in the middle fossa are rare and may involve the temporal lobe and lateral ventricle. Affected patients often suffer from seizures, but the pathomechanisms underlying the epileptogenic lesions have remained unclear. Here we report the surgical pathological features of the hippocampus in a 31-year-old woman with mesial temporal lobe epilepsy (mTLE), in whom an epidermoid cyst involving the right basal cistern and inferior horn of the lateral ventricle was evident. The ictal electrocorticogram indicated seizure onset at the parahippocampal gyrus. An anterior temporal lobectomy and amygdalohippocampectomy were performed. Histologically, the hippocampus showed marked atrophy with severe loss of pyramidal neurons in the cornu Ammonis subfields and granule cell loss in the dentate gyrus. At the ventricular surface of the hippocampus, there were small granulomatous lesions with spicularly anchored keratin substance. These features indicated multiple and chronic stab wounds by the cyst contents and consequent local inflammatory responses within the parenchyma. The predisposition to adhesion between the tumor and hippocampus may have caused neurons to develop abnormal irritability to certain chemical mediators present in the cyst. Epileptogenicity involving the atrophic hippocampus and medial temporal lobes nearby may have developed in association with these processes. This case appears to provide information that is useful for surgical planning in patients with mTLE and epidermoid cysts involving the medial temporal lobe.


Asunto(s)
Quiste Epidérmico/diagnóstico , Epilepsia del Lóbulo Temporal/diagnóstico , Lóbulo Temporal/patología , Adulto , Lobectomía Temporal Anterior/métodos , Quiste Epidérmico/patología , Quiste Epidérmico/cirugía , Epilepsia del Lóbulo Temporal/patología , Epilepsia del Lóbulo Temporal/cirugía , Femenino , Humanos , Lóbulo Temporal/cirugía
10.
Mol Cell Biol ; 42(3): e0039321, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35007165

RESUMEN

TAR DNA-binding protein 43 (TDP-43) is a causative factor of amyotrophic lateral sclerosis (ALS). Cytoplasmic TDP-43 aggregates in neurons are a hallmark pathology of ALS. Under various stress conditions, TDP-43 localizes sequentially to two cytoplasmic protein aggregates, namely, stress granules (SGs) first and then aggresomes. Accumulating evidence suggests that delayed clearance of TDP-43-positive SGs is associated with pathological TDP-43 aggregates in ALS. We found that ubiquitin-specific protease 10 (USP10) promotes the clearance of TDP-43-positive SGs in cells treated with proteasome inhibitor, thereby promoting the formation of TDP-43-positive aggresomes, and the depletion of USP10 increases the amount of insoluble TDP-35, a cleaved product of TDP-43, in the cytoplasm. TDP-35 interacted with USP10 in an RNA-binding-dependent manner; however, impaired RNA binding of TDP-35 reduced the localization in SGs and aggresomes and induced USP10-negative TDP-35 aggregates. Immunohistochemistry showed that most of the cytoplasmic TDP-43/TDP-35 aggregates in the neurons of ALS patients were USP10 negative. Our findings suggest that USP10 inhibits aberrant aggregation of TDP-43/TDP-35 in the cytoplasm of neuronal cells by promoting the clearance of TDP-43/TDP-35-positive SGs and facilitating the formation of TDP-43/TDP-35-positive aggresomes.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Citoplasma/metabolismo , Gránulos Citoplasmáticos/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , ARN/metabolismo , Gránulos de Estrés , Ubiquitina Tiolesterasa/metabolismo
11.
Neuroimage ; 58(1): 50-9, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21640833

RESUMEN

Seizure activities often originate from a localized region of the cerebral cortex and spread across large areas of the brain. The properties of these spreading abnormal discharges may account for clinical phenotypes in epilepsy patients, although the manner of their propagation and the underlying mechanisms are not well understood. In the present study we performed flavoprotein fluorescence imaging of cortical brain slices surgically resected from patients with partial epilepsy caused by various symptomatic lesions. Elicited neural activities in the epileptogenic tissue spread horizontally over the cortex momentarily, but those in control tissue taken from patients with brain tumors who had no history of epilepsy demonstrated only localized responses. Characteristically, the epileptiform propagation comprised early and late phases. When the stimulus intensity was changed gradually, the early phase showed an all-or-none behavior, whereas the late phase showed a gradual increase in the response. Moreover, the two phases were propagated through different cortical layers, suggesting that they are derived from distinct neural circuits. Morphological investigation revealed the presence of hypertrophic neurons and loss of dendritic spines, which might participate in the aberrant activities observed by flavoprotein fluorescence imaging. These findings indicate that synchronized activities of the early phase may play a key role in spreading abnormal discharges in human cortical epilepsies.


Asunto(s)
Encéfalo/patología , Epilepsia/patología , Adolescente , Adulto , Algoritmos , Encéfalo/fisiopatología , Mapeo Encefálico , Neoplasias Encefálicas/patología , Niño , Epilepsia/fisiopatología , Potenciales Evocados/fisiología , Femenino , Flavoproteínas/metabolismo , Fluorescencia , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Adulto Joven
12.
Neuropathology ; 31(5): 476-85, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21276083

RESUMEN

Hypertrophic and dysmorphic neurons have been identified in the hippocampal end folium of patients with mesial temporal lobe epilepsy (mTLE). No data are available regarding the correlation between these cellular alterations and the severity of hippocampal sclerosis (HS), and the significance of this phenomenon has been unclear. We evaluated both the perikaryon and nuclear areas of residual neurons in the hippocampal end folium of 47 patients with mTLE, seven with lesional neocortical temporal lobe epilepsy (LTLE), and 10 controls without seizure episodes. According to the severity of neuron loss in the end folium, we defined mTLE cases showing slight (<10%) or no, moderate (10-50%) and severe (>50%) loss as groups A, B and C, respectively. We also performed immunohistochemistry with antibodies against heat shock protein 70 and the phosphorylated epitope of neurofilament. In both mTLE and LTLE cases, the perikaryon and nuclear areas of the end folium neurons were significantly greater than those in the controls (P < 0.0001), and those in mTLE were significantly greater than those in LTLE. There were no differences in areas between groups A and B, but the areas in group C were significantly greater than those of both groups A and B. Neurons with large, bizarre morphology were labeled with both antibodies. Neuronal hypertrophy is evident in patients with epilepsy, and appears to advance gradually as the hippocampal sclerosis becomes more severe. This alteration may be a consequence of cellular stress incurred by neurons.


Asunto(s)
Epilepsia del Lóbulo Temporal/patología , Hipocampo/patología , Neuronas/patología , Adulto , Epilepsia del Lóbulo Temporal/metabolismo , Femenino , Proteínas HSP70 de Choque Térmico/biosíntesis , Hipocampo/química , Hipocampo/metabolismo , Humanos , Hipertrofia , Masculino , Persona de Mediana Edad , Neuronas/química , Neuronas/metabolismo , Adulto Joven
13.
Epilepsy Res ; 176: 106732, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34332257

RESUMEN

OBJECTIVE: Patients with cavernous angioma (CA) often suffer from severe epilepsy, and surgical resection is often performed to attenuate these epileptic seizures. Several studies have suggested that surgical removal of the surrounding hemosiderin-pigmented tissues adjacent to CA achieves better seizure control than restricted lesionectomy. Pathological examination of the resected foci reveals not only hemosiderin pigmentation but also various degrees of inflammatory change, such as hemosiderin-laden macrophages, gliosis and fibrosis. However, there is some controversy regarding the epileptogenic potential of these regions due to the uncertain nature of the mechanisms contributing to these histopathological changes. METHODS: To investigate the correlations between neuron hyperexcitability and evident pathological changes, we performed ex vivo flavoprotein fluorescence imaging using surgically resected epileptogenic foci surrounding CA. The mirror surfaces of the tissues used for the physiological experiment were also subjected to morphological examination. RESULTS: Hemosiderin-laden macrophages and many gemistocytic astrocytes were observed in the area adjacent to CA, where horizontal spreading excitations were detected significantly more frequently. Outside these areas, we found fine granular iron deposits and only a few fibrillary astrocytes, and weakly propagating excitations were detected. Furthermore, areas of enhanced activation were more clearly correlated with the glial proliferation index than with iron deposition. CONCLUSION: These results suggest that the epileptogenesis in patients with CA may be based on a biological process, such as alteration of glial function, rather than direct chemical reactions involving iron deposition.


Asunto(s)
Neoplasias Encefálicas , Hemangioma Cavernoso , Astrocitos/patología , Neoplasias Encefálicas/patología , Hemangioma Cavernoso/complicaciones , Hemangioma Cavernoso/diagnóstico por imagen , Hemangioma Cavernoso/cirugía , Humanos , Imagen por Resonancia Magnética , Convulsiones/cirugía
14.
Epilepsy Res ; 178: 106815, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34837826

RESUMEN

PURPOSE: The currently available indicators-sensitivity and specificity of expert radiological evaluation of MRIs-to identify mesial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis (HS) are deficient, as they cannot be easily assessed. We developed and investigated the use of a novel convolutional neural network trained on preoperative MRIs to aid diagnosis of these conditions. SUBJECTS AND METHODS: We enrolled 141 individuals: 85 with clinically diagnosed mesial temporal lobe epilepsy (MTLE) and hippocampal sclerosis International League Against Epilepsy (HS ILAE) type 1 who had undergone anterior temporal lobe hippocampectomy were assigned to the MTLE-HS group, and 56 epilepsy clinic outpatients diagnosed as nonepileptic were assigned to the normal group. We fine-tuned a modified CNN (mCNN) to classify the fully connected layers of ImageNet-pretrained VGG16 network models into the MTLE-HS and control groups. MTLE-HS was diagnosed using MRI both by the fine-tuned mCNN and epilepsy specialists. Their performances were compared. RESULTS: The fine-tuned mCNN achieved excellent diagnostic performance, including 91.1% [85%, 96%] mean sensitivity and 83.5% [75%, 91%] mean specificity. The area under the resulting receiver operating characteristic curve was 0.94 [0.90, 0.98] (DeLong's method). Expert interpretation of the same image data achieved a mean sensitivity of 73.1% [65%, 82%] and specificity of 66.3% [50%, 82%]. These confidence intervals were located entirely under the receiver operating characteristic curve of the fine-tuned mCNN. CONCLUSIONS: Deep learning-based diagnosis of MTLE-HS from preoperative MR images using our fine-tuned mCNN achieved a performance superior to the visual interpretation by epilepsy specialists. Our model could serve as a useful preoperative diagnostic tool for ascertaining hippocampal atrophy in patients with MTLE.


Asunto(s)
Aprendizaje Profundo , Epilepsia del Lóbulo Temporal , Atrofia/patología , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Hipocampo/diagnóstico por imagen , Hipocampo/patología , Hipocampo/cirugía , Humanos , Imagen por Resonancia Magnética , Esclerosis/complicaciones , Esclerosis/diagnóstico por imagen , Esclerosis/cirugía
15.
Heliyon ; 6(1): e03259, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32042979

RESUMEN

Aquaporin-4 (AQP4) is a water conducting membrane integral protein channel which is widely expressed in the astrocyte system of the brain. During the development of the AQP4 positron emission tomography (PET) imaging agent [11C]TGN-020 (N-(1,3,4-thiadiazol-2-yl)pyridine-3-[11C]-carboxamide), significant radioligand uptake was observed in the skull, where there was no known distribution of any aquaporin family proteins. Herein we confirmed via a newly developed method for bone-tissue immunohistology, a hitherto unrecognized distribution of AQP4, and not AQP1, in the skull. Other bony structures, by contrast, showed virtually no uptake of [11C]TGN-020, and likewise, do not express either AQP4 or AQP1. Immunohistological analysis demonstrated that the AQP4 expression in the skull is restricted to the diploë. Consequently, we suspect AQP4 plays a pivotal role in the formation and maintenance of yellow marrow and the diploë. However, elucidating the exact nature of that role will require further studies.

16.
Epilepsy Res ; 168: 106502, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33197783

RESUMEN

Hippocampal sclerosis (HS) is the most common neuropathological condition in adults with drug-resistant epilepsy and represents a critical feature in mesial temporal lobe epilepsy (MTLE) syndrome. Although epileptogenic brain tissue is associated with glutamate excitotoxicity leading to oxidative stress, the proteins that are targets of oxidative damage remain to be determined. In the present study we designed comprehensive analyses of changes in protein expression level and protein oxidation status in the hippocampus or neocortex to highlight proteins associated with excitotoxicity by comparing MTLE patients with relatively mild excitotoxicity (MTLE patients without HS, MTLE-non-HS) and those with severe excitotoxicity (MTLE patients with HS, MTLE-HS). We performed 2-dimensional fluorescence difference gel electrophoresis, 2D-oxyblot analysis, and mass spectrometric amino acid sequencing. We identified 16 proteins at 18 spots in which the protein expression levels differed between sclerotic and non-sclerotic hippocampi. In the sclerotic hippocampus, the expression levels of several synaptic proteins were decreased, and those of some glia-associated proteins increased. We confirmed histologically that all MTLE-HS cases examined exhibited severe neuronal cell loss and remarkable astrocytic gliosis in the hippocampi. In all MTLE-non-HS cases examined, neurons were spared and gliosis was unremarkable. Therefore, we consider that decreased synaptic proteins are a manifestation of loss of neuronal cell bodies and dendrites, whereas increased glia-associated proteins are a manifestation of proliferation and hypertrophy of astrocytes. These are considered to be the result of hippocampal sclerosis. In contrast, the expression level of d-3-phosphoglycerate dehydrogenase (PHGDH), an l-serine synthetic enzyme expressed exclusively by astrocytes, was decreased, and that of stathmin 1, a neurite extension-related protein expressed by neurons, was increased in the sclerotic hippocampus. These findings cannot be explained solely as the result of hippocampal sclerosis. Rather, these changes can be involved in the continuation of seizure disorders in MTLE-HS. In addition, the protein carbonylation detection, an indicator of protein oxidation caused by excitotoxicity of multiple seizures and/or status epilepticus, revealed that the carbonyl level of collapsin response mediator protein 2 (CRMP2) increased significantly in the sclerotic hippocampus. In conclusion, protein identification following profiling of protein expression levels and detection of oxidative proteins indicated potential pathognomonic protein changes. The decreased expression of PHGDH, increased expression of stathmin 1, and carbonylation of CRMP2 differentiate between MTLE with and without HS. Therefore, further investigations of PHGDH, stathmin 1 and CRMP2 are promising to study more detailed effects of excitotoxicity on epileptogenic hippocampal tissue.


Asunto(s)
Epilepsia Refractaria/patología , Epilepsia del Lóbulo Temporal/patología , Hipocampo/patología , Proteómica , Esclerosis/patología , Adulto , Epilepsia/complicaciones , Epilepsia/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuronas/patología , Estado Epiléptico/patología , Adulto Joven
17.
Contrast Media Mol Imaging ; 2020: 8831936, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33304204

RESUMEN

Many of the focal neurological symptoms associated with Alzheimer's disease (AD) are due to synaptic loss. Glutamate chemical exchange saturation transfer (GluCEST) magnetic resonance imaging (MRI) is a candidate method to assess synaptic dysfunction. We assessed chronological changes in GluCEST in a 5xFAD mouse model of AD, comparing Glucest effects and regional cerebral blood flow (CBF). GluCEST effects and CBF in 5xFAD mice aged 1-15 months and their littermates (WT) were measured. Neurite orientation dispersion and density imaging (NODDI) MRI reflecting dendritic/axonal density was also measured and compared with GluCEST in 7-month-old mice. While regional CBF's decrease began at 7 months, GluCEST-reduction effects preceded hypoperfusion of the temporal cortex and hippocampus. While longitudinal 5xFAD mouse measurements revealed a correlation between the regional GluCEST effects and CBF, a generalized linear mixed model revealed statistically different correlations in cortical and basal brain regions. Further, NODDI-derived neurite density correlated with GluCEST effects in the parietal cortex, but not in the hippocampus, thereby revealing regional differences in pathophysiological mechanisms. Finally, GluCEST's effects correlated with regional synaptophysin. These results demonstrate that GluCEST can reflect subtle synaptic changes and may be a potential imaging method for AD diagnosis as well as serve as a biomarker of AD progression.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Circulación Cerebrovascular , Ácido Glutámico/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Animales , Modelos Animales de Enfermedad , Ácido Glutámico/análisis , Humanos , Estudios Longitudinales , Ratones , Ratones Transgénicos
18.
Nat Commun ; 11(1): 1982, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341345

RESUMEN

Whole-organ/body three-dimensional (3D) staining and imaging have been enduring challenges in histology. By dissecting the complex physicochemical environment of the staining system, we developed a highly optimized 3D staining imaging pipeline based on CUBIC. Based on our precise characterization of biological tissues as an electrolyte gel, we experimentally evaluated broad 3D staining conditions by using an artificial tissue-mimicking material. The combination of optimized conditions allows a bottom-up design of a superior 3D staining protocol that can uniformly label whole adult mouse brains, an adult marmoset brain hemisphere, an ~1 cm3 tissue block of a postmortem adult human cerebellum, and an entire infant marmoset body with dozens of antibodies and cell-impermeant nuclear stains. The whole-organ 3D images collected by light-sheet microscopy are used for computational analyses and whole-organ comparison analysis between species. This pipeline, named CUBIC-HistoVIsion, thus offers advanced opportunities for organ- and organism-scale histological analysis of multicellular systems.


Asunto(s)
Encéfalo/patología , Cerebelo/patología , Electrólitos , Imagenología Tridimensional , Microscopía Fluorescente , Adulto , Animales , Animales Recién Nacidos , Callithrix , Femenino , Colorantes Fluorescentes , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Ratones , Ratones Endogámicos C57BL , Imagen Óptica
19.
Sci Rep ; 9(1): 12896, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31501480

RESUMEN

The aberrant accumulation of ubiquitinated protein aggregates in cells plays a critical role in the pathogenesis of several degenerative diseases, including Parkinson disease (PD) and cystic fibrosis (CF). In this study, we found that Ras GTPase-activating protein-binding protein 1 (G3BP1) inhibits ubiquitinated protein aggregations induced by p62 and USP10 in cultured cells. p62 is a ubiquitin receptor, and p62 and its binding partner USP10 have been shown to augment ubiquitinated protein aggregation. G3BP1 interacted with p62 and USP10 and inhibited p62/USP10-induced protein aggregation. The G3BP1 inhibition of protein aggregations targeted two aggregation-prone proteins, α-synuclein and CFTR-ΔF508, which are causative factors of PD and CF, respectively. G3BP1 depletion increased the amounts of ubiquitinated α-synuclein and CFTR-ΔF508 protein. A proteasome reporter indicated that G3BP1 depletion inhibits the proteasome activity. We herein present evidence that G3BP1, p62 and USP10 together control ubiquitinated protein toxicity by controlling both ubiquitination and aggregation. Taken together, these results suggest that G3BP1, p62 and USP10 could be therapeutic targets for ubiquitinated protein aggregation disorders, including PD and CF.


Asunto(s)
ADN Helicasas/deficiencia , ADN Helicasas/genética , Técnicas de Inactivación de Genes , Proteínas de Unión a Poli-ADP-Ribosa/deficiencia , Proteínas de Unión a Poli-ADP-Ribosa/genética , ARN Helicasas/deficiencia , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/deficiencia , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas de Unión al ARN/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación , Línea Celular , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , alfa-Sinucleína/metabolismo
20.
Sci Rep ; 9(1): 10591, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31332267

RESUMEN

Tau aggregates in neurons of brain lesions is a hallmark pathology of tauopathies, including Alzheimer's disease (AD). Recent studies suggest that the RNA-binding protein TIA1 initiates Tau aggregation by inducing the formation of stress granules (SGs) containing Tau. SGs are stress-inducible cytoplasmic protein aggregates containing many RNA-binding proteins that has been implicated as an initial site of multiple pathogenic protein aggregates in several neurodegenerative diseases. In this study, we found that ubiquitin-specific protease 10 (USP10) is a critical factor for the formation of Tau/TIA1/USP10-positive SGs. Proteasome inhibition or TIA1-overexpression in HT22 neuronal cells induced the formation of TIA1/Tau-positive SGs, and the formations were severely attenuated by depletion of USP10. In addition, the overexpression of USP10 without stress stimuli in HT22 cells induced TIA1/Tau/USP10-positive SGs in a deubiquitinase-independent manner. In AD brain lesions, USP10 was colocalized with Tau aggregates in the cell body of neurons. The present findings suggest that USP10 plays a key role in the initiation of pathogenic Tau aggregation in AD through SG formation.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Neuronas/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Proteínas tau/metabolismo , Animales , Western Blotting , Línea Celular , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA