Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 74(2): 973-986, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33872408

RESUMEN

BACKGROUND AND AIMS: The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates an array of cytoprotective genes, yet studies in transgenic mice have led to conflicting reports on its role in liver regeneration. We aimed to test the hypothesis that pharmacological activation of Nrf2 would enhance liver regeneration. APPROACH AND RESULTS: Wild-type and Nrf2 null mice were administered bardoxolone methyl (CDDO-Me), a potent activator of Nrf2 that has entered clinical development, and then subjected to two-thirds partial hepatectomy. Using translational noninvasive imaging techniques, CDDO-Me was shown to enhance the rate of restoration of liver volume (MRI) and improve liver function (multispectral optoacoustic imaging of indocyanine green clearance) in wild-type, but not Nrf2 null, mice following partial hepatectomy. Using immunofluorescence imaging and whole transcriptome analysis, these effects were found to be associated with an increase in hepatocyte hypertrophy and proliferation, the suppression of immune and inflammatory signals, and metabolic adaptation in the remnant liver tissue. Similar processes were modulated following exposure of primary human hepatocytes to CDDO-Me, highlighting the potential relevance of our findings to patients. CONCLUSIONS: Our results indicate that pharmacological activation of Nrf2 is a promising strategy for enhancing functional liver regeneration. Such an approach could therefore aid the recovery of patients undergoing liver surgery and support the treatment of acute and chronic liver disease.


Asunto(s)
Regeneración Hepática/efectos de los fármacos , Hígado/efectos de los fármacos , Factor 2 Relacionado con NF-E2/agonistas , Ácido Oleanólico/análogos & derivados , Adulto , Anciano de 80 o más Años , Animales , Células Cultivadas , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Hepatectomía , Hepatocitos , Humanos , Hígado/fisiología , Hígado/cirugía , Regeneración Hepática/genética , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Ácido Oleanólico/administración & dosificación , Cultivo Primario de Células
2.
Hepatology ; 70(5): 1732-1749, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31070244

RESUMEN

Idiosyncratic drug-induced liver injury (DILI) is a rare, often difficult-to-predict adverse reaction with complex pathomechanisms. However, it is now evident that certain forms of DILI are immune-mediated and may involve the activation of drug-specific T cells. Exosomes are cell-derived vesicles that carry RNA, lipids, and protein cargo from their cell of origin to distant cells, and they may play a role in immune activation. Herein, primary human hepatocytes were treated with drugs associated with a high incidence of DILI (flucloxacillin, amoxicillin, isoniazid, and nitroso-sulfamethoxazole) to characterize the proteins packaged within exosomes that are subsequently transported to dendritic cells for processing. Exosomes measured between 50 and 100 nm and expressed enriched CD63. Liquid chromatography-tandem mass spectrometry (LC/MS-MS) identified 2,109 proteins, with 608 proteins being quantified across all exosome samples. Data are available through ProteomeXchange with identifier PXD010760. Analysis of gene ontologies revealed that exosomes mirrored whole human liver tissue in terms of the families of proteins present, regardless of drug treatment. However, exosomes from nitroso-sulfamethoxazole-treated hepatocytes selectively packaged a specific subset of proteins. LC/MS-MS also revealed the presence of hepatocyte-derived exosomal proteins covalently modified with amoxicillin, flucloxacillin, and nitroso-sulfamethoxazole. Uptake of exosomes by monocyte-derived dendritic cells occurred silently, mainly through phagocytosis, and was inhibited by latrunculin A. An amoxicillin-modified 9-mer peptide derived from the exosomal transcription factor protein SRY (sex determining region Y)-box 30 activated naïve T cells from human leukocyte antigen A*02:01-positive human donors. Conclusion: This study shows that exosomes have the potential to transmit drug-specific hepatocyte-derived signals to the immune system and provide a pathway for the induction of drug hapten-specific T-cell responses.


Asunto(s)
Células Dendríticas/metabolismo , Exosomas/efectos de los fármacos , Exosomas/metabolismo , Hepatocitos/efectos de los fármacos , Sistema Inmunológico/metabolismo , Transporte de Proteínas , Células Cultivadas , Hepatocitos/ultraestructura , Humanos
3.
Hepatology ; 65(2): 710-721, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27775817

RESUMEN

Current preclinical drug testing does not predict some forms of adverse drug reactions in humans. Efforts at improving predictability of drug-induced tissue injury in humans include using stem cell technology to generate human cells for screening for adverse effects of drugs in humans. The advent of induced pluripotent stem cells means that it may ultimately be possible to develop personalized toxicology to determine interindividual susceptibility to adverse drug reactions. However, the complexity of idiosyncratic drug-induced liver injury means that no current single-cell model, whether of primary liver tissue origin, from liver cell lines, or derived from stem cells, adequately emulates what is believed to occur during human drug-induced liver injury. Nevertheless, a single-cell model of a human hepatocyte which emulates key features of a hepatocyte is likely to be valuable in assessing potential chemical risk; furthermore, understanding how to generate a relevant hepatocyte will also be critical to efforts to build complex multicellular models of the liver. Currently, hepatocyte-like cells differentiated from stem cells still fall short of recapitulating the full mature hepatocellular phenotype. Therefore, we convened a number of experts from the areas of preclinical and clinical hepatotoxicity and safety assessment, from industry, academia, and regulatory bodies, to specifically explore the application of stem cells in hepatotoxicity safety assessment and to make recommendations for the way forward. In this short review, we particularly discuss the importance of benchmarking stem cell-derived hepatocyte-like cells to their terminally differentiated human counterparts using defined phenotyping, to make sure the cells are relevant and comparable between labs, and outline why this process is essential before the cells are introduced into chemical safety assessment. (Hepatology 2017;65:710-721).


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Hepatocitos/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Pruebas de Toxicidad , Células Cultivadas/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Técnicas In Vitro , Células Madre Pluripotentes/metabolismo , Valor Predictivo de las Pruebas , Sensibilidad y Especificidad
4.
Toxicol Appl Pharmacol ; 332: 64-74, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28755860

RESUMEN

The prediction and understanding of acetaminophen (APAP)-induced liver injury (APAP-ILI) and the response to therapeutic interventions is complex. This is due in part to sensitivity and specificity limitations of currently used assessment techniques. Here we sought to determine the utility of integrating translational non-invasive photoacoustic imaging of liver function with mechanistic circulating biomarkers of hepatotoxicity with histological assessment to facilitate the more accurate and precise characterization of APAP-ILI and the efficacy of therapeutic intervention. Perturbation of liver function and cellular viability was assessed in C57BL/6J male mice by Indocyanine green (ICG) clearance (Multispectral Optoacoustic Tomography (MSOT)) and by measurement of mechanistic (miR-122, HMGB1) and established (ALT, bilirubin) circulating biomarkers in response to the acetaminophen and its treatment with acetylcysteine (NAC) in vivo. We utilised a 60% partial hepatectomy model as a situation of defined hepatic functional mass loss to compared acetaminophen-induced changes to. Integration of these mechanistic markers correlated with histological features of APAP hepatotoxicity in a time-dependent manner. They accurately reflected the onset and recovery from hepatotoxicity compared to traditional biomarkers and also reported the efficacy of NAC with high sensitivity. ICG clearance kinetics correlated with histological scores for acute liver damage for APAP (i.e. 3h timepoint; r=0.90, P<0.0001) and elevations in both of the mechanistic biomarkers, miR-122 (e.g. 6h timepoint; r=0.70, P=0.005) and HMGB1 (e.g. 6h timepoint; r=0.56, P=0.04). For the first time we report the utility of this non-invasive longitudinal imaging approach to provide direct visualisation of the liver function coupled with mechanistic biomarkers, in the same animal, allowing the investigation of the toxicological and pharmacological aspects of APAP-ILI and hepatic regeneration.


Asunto(s)
Acetaminofén/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico por imagen , Hígado/efectos de los fármacos , Técnicas Fotoacústicas , Acetilcisteína/administración & dosificación , Alanina Transaminasa/sangre , Animales , Bilirrubina/sangre , Biomarcadores/sangre , Supervivencia Celular/efectos de los fármacos , Glutatión/sangre , Proteína HMGB1/sangre , Hígado/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/sangre
5.
J Pathol ; 238(3): 423-33, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26497117

RESUMEN

The cellular defence protein Nrf2 is a mediator of oncogenesis in pancreatic ductal adenocarcinoma (PDAC) and other cancers. However, the control of Nrf2 expression and activity in cancer is not fully understood. We previously reported the absence of Keap1, a pivotal regulator of Nrf2, in ∼70% of PDAC cases. Here we describe a novel mechanism whereby the epigenetic regulator UHRF1 suppresses Keap1 protein levels. UHRF1 expression was observed in 20% (5 of 25) of benign pancreatic ducts compared to 86% (114 of 132) of pancreatic tumours, and an inverse relationship between UHRF1 and Keap1 levels in PDAC tumours (n = 124) was apparent (p = 0.002). We also provide evidence that UHRF1-mediated regulation of the Nrf2 pathway contributes to the aggressive behaviour of PDAC. Depletion of UHRF1 from PDAC cells decreased growth and enhanced apoptosis and cell cycle arrest. UHRF1 depletion also led to reduced levels of Nrf2-regulated downstream proteins and was accompanied by heightened oxidative stress, in the form of lower glutathione levels and increased reactive oxygen species. Concomitant depletion of Keap1 and UHRF1 restored Nrf2 levels and reversed cell cycle arrest and the increase in reactive oxygen species. Mechanistically, depletion of UHRF1 reduced global and tumour suppressor promoter methylation in pancreatic cancer cell lines, and KEAP1 gene promoter methylation was reduced in one of three cell lines examined. Thus, methylation of the KEAP1 gene promoter may contribute to the suppression of Keap1 protein levels by UHRF1, although our data suggest that additional mechanisms need to be explored. Finally, we demonstrate that K-Ras drives UHRF1 expression, establishing a novel link between this oncogene and Nrf2-mediated cellular protection. Since UHRF1 over-expression occurs in other cancers, its ability to regulate the Keap1-Nrf2 pathway may be critically important to the malignant behaviour of these cancers.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias Pancreáticas/etiología , Proteínas Potenciadoras de Unión a CCAAT/deficiencia , Carcinogénesis , Puntos de Control del Ciclo Celular/fisiología , Transformación Celular Neoplásica/patología , Metilación de ADN/fisiología , Humanos , Proteína 1 Asociada A ECH Tipo Kelch , Estrés Oxidativo/fisiología , Neoplasias Pancreáticas/patología , Transducción de Señal/fisiología , Carga Tumoral , Células Tumorales Cultivadas , Ubiquitina-Proteína Ligasas
6.
Arch Toxicol ; 91(1): 439-452, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27039104

RESUMEN

The application of primary human hepatocytes following isolation from human tissue is well accepted to be compromised by the process of dedifferentiation. This phenomenon reduces many unique hepatocyte functions, limiting their use in drug disposition and toxicity assessment. The aetiology of dedifferentiation has not been well defined, and further understanding of the process would allow the development of novel strategies for sustaining the hepatocyte phenotype in culture or for improving protocols for maturation of hepatocytes generated from stem cells. We have therefore carried out the first proteomic comparison of primary human hepatocyte differentiation. Cells were cultured for 0, 24, 72 and 168 h as a monolayer in order to permit unrestricted hepatocyte dedifferentiation, so as to reveal the causative signalling pathways and factors in this process, by pathway analysis. A total of 3430 proteins were identified with a false detection rate of <1 %, of which 1117 were quantified at every time point. Increasing numbers of significantly differentially expressed proteins compared with the freshly isolated cells were observed at 24 h (40 proteins), 72 h (118 proteins) and 168 h (272 proteins) (p < 0.05). In particular, cytochromes P450 and mitochondrial proteins underwent major changes, confirmed by functional studies and investigated by pathway analysis. We report the key factors and pathways which underlie the loss of hepatic phenotype in vitro, particularly those driving the large-scale and selective remodelling of the mitochondrial and metabolic proteomes. In summary, these findings expand the current understanding of dedifferentiation should facilitate further development of simple and complex hepatic culture systems.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Hepatocitos/metabolismo , Farmacología/métodos , Proteoma/metabolismo , Toxicología/métodos , Desdiferenciación Celular/efectos de los fármacos , Células Cultivadas , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Humanos , Cinética , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/enzimología , Mitocondrias Hepáticas/metabolismo , Estabilidad Proteica/efectos de los fármacos , Proteoma/genética , Reproducibilidad de los Resultados , Rotenona/farmacología , Desacopladores/farmacología
7.
Arch Toxicol ; 91(3): 1385-1400, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27344343

RESUMEN

Assessing the potential of a new drug to cause drug-induced liver injury (DILI) is a challenge for the pharmaceutical industry. We therefore determined whether cell models currently used in safety assessment (HepG2, HepaRG, Upcyte and primary human hepatocytes in conjunction with basic but commonly used endpoints) are actually able to distinguish between novel chemical entities (NCEs) with respect to their potential to cause DILI. A panel of thirteen compounds (nine DILI implicated and four non-DILI implicated in man) were selected for our study, which was conducted, for the first time, across multiple laboratories. None of the cell models could distinguish faithfully between DILI and non-DILI compounds. Only when nominal in vitro concentrations were adjusted for in vivo exposure levels were primary human hepatocytes (PHH) found to be the most accurate cell model, closely followed by HepG2. From a practical perspective, this study revealed significant inter-laboratory variation in the response of PHH, HepG2 and Upcyte cells, but not HepaRG cells. This variation was also observed to be compound dependent. Interestingly, differences between donors (hepatocytes), clones (HepG2) and the effect of cryopreservation (HepaRG and hepatocytes) were less important than differences between the cell models per se. In summary, these results demonstrate that basic cell health endpoints will not predict hepatotoxic risk in simple hepatic cells in the absence of pharmacokinetic data and that a multicenter assessment of more sophisticated signals of molecular initiating events is required to determine whether these cells can be incorporated in early safety assessment.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Pruebas de Toxicidad Aguda/métodos , Células Cultivadas , Criopreservación , Células Hep G2/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Humanos , Reproducibilidad de los Resultados , Pruebas de Toxicidad Aguda/normas
8.
Mol Cell Proteomics ; 14(4): 933-45, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25645933

RESUMEN

The mutational status of the immunoglobulin heavy chain variable region defines two clinically distinct forms of chronic lymphocytic leukemia (CLL) known as mutated (M-CLL) and unmutated (UM-CLL). To elucidate the molecular mechanisms underlying the adverse clinical outcome associated with UM-CLL, total proteomes from nine UM-CLL and nine M-CLL samples were analyzed by isobaric tags for relative and absolute quantification (iTRAQ)-based mass spectrometry. Based on the expression of 3521 identified proteins, principal component analysis separated CLL samples into two groups corresponding to immunoglobulin heavy chain variable region mutational status. Computational analysis showed that 43 cell migration/adhesion pathways were significantly enriched by 39 differentially expressed proteins, 35 of which were expressed at significantly lower levels in UM-CLL samples. Furthermore, UM-CLL cells underexpressed proteins associated with cytoskeletal remodeling and overexpressed proteins associated with transcriptional and translational activity. Taken together, our findings indicate that UM-CLL cells are less migratory and more adhesive than M-CLL cells, resulting in their retention in lymph nodes, where they are exposed to proliferative stimuli. In keeping with this hypothesis, analysis of an extended cohort of 120 CLL patients revealed a strong and specific association between UM-CLL and lymphadenopathy. Our study illustrates the potential of total proteome analysis to elucidate pathogenetic mechanisms in cancer.


Asunto(s)
Movimiento Celular , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Leucemia Linfocítica Crónica de Células B/genética , Mutación/genética , Proteoma/metabolismo , Proteómica/métodos , Anciano , Western Blotting , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Quimiocina CCL21/farmacología , Quimiotaxis/efectos de los fármacos , Biología Computacional , Femenino , Humanos , Marcaje Isotópico , Leucemia Linfocítica Crónica de Células B/patología , Enfermedades Linfáticas/patología , Masculino , Espectrometría de Masas , Proteínas de Neoplasias/metabolismo , Reproducibilidad de los Resultados
9.
Lancet ; 385 Suppl 1: S95, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26312918

RESUMEN

BACKGROUND: Colorectal cancer is the fourth commonest cancer in the UK, and the second commonest cause of cancer-related death. A knowledge of the biological phenotype of colorectal liver metastases would be invaluable to inform clinical decision making; however, deriving this information from the metastatic lesions is not feasible until after resection. We aimed to use proteomic analysis to identify biomarkers in the primary tumour that predict response to neoadjuvant chemotherapy in liver metastases. METHODS: Fresh tissue from both primary colorectal tumour and liver metastases from 17 patients was subjected to proteomic analysis using isobaric tagging for relative quantification. Data were analysed with Protein Pilot (Ab Sciex, Framingham, MA, USA), with stratification of patients into those showing low or high response to chemotherapy permitting the identification of potential predictive biomarkers. These markers were subsequently validated by immunohistochemistry on a tissue microarray of 63 patients. FINDINGS: We identified 5768 discrete proteins. Five of them predicted histopathological response to fluorouracil-based chemotherapy regimens, of which the FAD binding protein NQO1 was subsequently validated by immunohistochemistry. When compared with the chemotherapeutic agent alone, knockdown of the corresponding gene with small interfering RNA decreased cell viability when co-incubated with fluorouracil (77·1% vs 46·6%, p=0·037) and irinotecan (41·7% vs 24·4%, p=0·006). Similar results were also seen after inhibition of protein activity by pretreating cells with dicoumarol. INTERPRETATION: These results show that proteomic sequencing of matched metastatic colorectal cancer samples is feasible, with high protein coverage. The high degree of similarity between the primary and secondary proteomes suggests that primary tissue is predictive of the metastatic phenotype. NQO1 expression in the primary tumour predicts response to neoadjuvant chemotherapy in the liver metastases, and inhibition of this protein at both genetic and functional levels improves chemosensitivity. FUNDING: Cancer Research UK.

10.
Kidney Int ; 88(6): 1261-1273, 2015 12.
Artículo en Inglés | MEDLINE | ID: mdl-26422507

RESUMEN

The transcription factor Nrf2 exerts protective effects in numerous experimental models of acute kidney injury, and is a promising therapeutic target in chronic kidney disease. To provide a detailed insight into the regulatory roles of Nrf2 in the kidney, we performed integrated transcriptomic and proteomic analyses of kidney tissue from wild-type and Nrf2 knockout mice treated with the Nrf2 inducer methyl-2-cyano-3,12-dioxooleano-1,9-dien-28-oate (CDDO-Me, also known as bardoxolone methyl). After 24 h, analyses identified 2561 transcripts and 240 proteins that were differentially expressed in the kidneys of Nrf2 knockout mice, compared with those of wild-type counterparts, and 3122 transcripts and 68 proteins that were differentially expressed in wild-type mice treated with CDDO-Me, compared with those of vehicle control. In the light of their sensitivity to genetic and pharmacological modulation of renal Nrf2 activity, genes/proteins that regulate xenobiotic disposition, redox balance, the intra/extracellular transport of small molecules, and the supply of NADPH and other cellular fuels were found to be positively regulated by Nrf2 in the kidney. This was verified by qPCR, immunoblotting, pathway analysis, and immunohistochemistry. In addition, the levels of NADPH and glutathione were found to be significantly decreased in the kidneys of Nrf2 knockout mice. Thus, Nrf2 regulates genes that coordinate homeostatic processes in the kidney, highlighting its potential as a novel therapeutic target.

11.
J Hepatol ; 62(3): 581-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25457200

RESUMEN

BACKGROUND & AIMS: Hepatocyte-like cells (HLCs), differentiated from pluripotent stem cells by the use of soluble factors, can model human liver function and toxicity. However, at present HLC maturity and whether any deficit represents a true fetal state or aberrant differentiation is unclear and compounded by comparison to potentially deteriorated adult hepatocytes. Therefore, we generated HLCs from multiple lineages, using two different protocols, for direct comparison with fresh fetal and adult hepatocytes. METHODS: Protocols were developed for robust differentiation. Multiple transcript, protein and functional analyses compared HLCs to fresh human fetal and adult hepatocytes. RESULTS: HLCs were comparable to those of other laboratories by multiple parameters. Transcriptional changes during differentiation mimicked human embryogenesis and showed more similarity to pericentral than periportal hepatocytes. Unbiased proteomics demonstrated greater proximity to liver than 30 other human organs or tissues. However, by comparison to fresh material, HLC maturity was proven by transcript, protein and function to be fetal-like and short of the adult phenotype. The expression of 81% phase 1 enzymes in HLCs was significantly upregulated and half were statistically not different from fetal hepatocytes. HLCs secreted albumin and metabolized testosterone (CYP3A) and dextrorphan (CYP2D6) like fetal hepatocytes. In seven bespoke tests, devised by principal components analysis to distinguish fetal from adult hepatocytes, HLCs from two different source laboratories consistently demonstrated fetal characteristics. CONCLUSIONS: HLCs from different sources are broadly comparable with unbiased proteomic evidence for faithful differentiation down the liver lineage. This current phenotype mimics human fetal rather than adult hepatocytes.


Asunto(s)
Células Madre Fetales/citología , Células Madre Fetales/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Adulto , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Diferenciación Celular , Línea Celular , Linaje de la Célula , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Metaboloma , Modelos Biológicos , Fenotipo , Proteoma/metabolismo
12.
J Biol Chem ; 288(31): 22281-8, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23775080

RESUMEN

Nrf2 is a redox-responsive transcription factor that has been implicated in the regulation of DC immune function. Loss of Nrf2 results in increased co-stimulatory molecule expression, enhanced T cell stimulatory capacity, and increased reactive oxygen species (ROS) levels in murine immature DCs (iDCs). It is unknown whether altered immune function of Nrf2-deficient DCs (Nrf2(-/-) iDCs) is due to elevated ROS levels. Furthermore, it is unclear which intracellular signaling pathways are involved in Nrf2-mediated regulation of DC function. Using antioxidant vitamins to reset ROS levels in Nrf2(-/-) iDCs, we show that elevated ROS is not responsible for the altered phenotype and function of these DCs. Pharmacological inhibitors were used to explore the role of key MAPKs in mediating the altered phenotype and function in Nrf2(-/-) iDCs. We demonstrate that the increased co-stimulatory molecule expression (MHC II and CD86) and antigen-specific T cell activation capacity observed in Nrf2(-/-) iDCs was reversed by inhibition of p38 MAPK but not JNK. Importantly, we provide evidence for increased phosphorylation of cAMP-responsive element binding protein (CREB) and activating transcription factor 1 (ATF1), transcription factors that are downstream of p38 MAPK. The increased phosphorylation of CREB/ATF1 in Nrf2(-/-) iDCs was sensitive to p38 MAPK inhibition. We also show data to implicate heme oxygenase-1 as a potential molecular link between Nrf2 and CREB/ATF1. These results indicate that dysregulation of p38 MAPK-CREB/ATF1 signaling axis underlies the altered function and phenotype in Nrf2-deficient DCs. Our findings provide new insights into the mechanisms by which Nrf2 mediates regulation of DC function.


Asunto(s)
Factor de Transcripción Activador 1/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Células Dendríticas/inmunología , Factor 2 Relacionado con NF-E2/fisiología , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Hemo-Oxigenasa 1/metabolismo , Interleucina-10/biosíntesis , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , Especies Reactivas de Oxígeno/metabolismo
13.
Hepatology ; 58(2): 799-809, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23526496

RESUMEN

UNLABELLED: Failure to predict hepatotoxic drugs in preclinical testing makes it imperative to develop better liver models with a stable phenotype in culture. Stem cell-derived models offer promise, with differentiated hepatocyte-like cells currently considered to be "fetal-like" in their maturity. However, this judgment is based on limited biomarkers or transcripts and lacks the required proteomic datasets that directly compare fetal and adult hepatocytes. Here, we quantitatively compare the proteomes of human fetal liver, adult hepatocytes, and the HepG2 cell line. In addition, we investigate the proteome changes in human fetal and adult hepatocytes when cultured in a new air-liquid interface format compared to conventional submerged extracellular matrix sandwich culture. From albumin and urea secretion, and luciferase-based cytochrome P450 activity, adult hepatocytes were viable in either culture model over 2 weeks. The function of fetal cells was better maintained in the air-liquid interface system. Strikingly, the proteome was qualitatively similar across all samples but hierarchical clustering showed that each sample type had a distinct quantitative profile. HepG2 cells more closely resembled fetal than adult hepatocytes. Furthermore, clustering showed that primary adult hepatocytes cultured at the air-liquid interface retained a proteome that more closely mimicked their fresh counterparts than conventional culture, which acquired myofibroblast features. Principal component analysis extended these findings and identified a simple set of proteins, including cytochrome P450 2A6, glutathione S transferase P, and alcohol dehydrogenases as specialized indicators of hepatocyte differentiation. CONCLUSION: Our quantitative datasets are the first that directly compare multiple human liver cells, define a model for enhanced maintenance of the hepatocyte proteome in culture, and provide a new protein "toolkit" for determining human hepatocyte maturity in cultured cells.


Asunto(s)
Diferenciación Celular/genética , Hepatocitos/metabolismo , Hepatocitos/patología , Proteómica/métodos , Alcohol Deshidrogenasa/metabolismo , Células Cultivadas , Sistema Enzimático del Citocromo P-450/metabolismo , Glutatión Transferasa/metabolismo , Células Hep G2 , Humanos , Hígado/citología , Hígado/embriología , Hígado/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología
14.
Med Res Rev ; 33(5): 985-1080, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23090860

RESUMEN

The decline in approval of new drugs during the past decade has led to a close analysis of the drug discovery process. One of the main reasons for attrition is preclinical toxicity, frequently attributed to the generation of protein-reactive drug metabolites. In this review, we present a critique of such reactive metabolites and evaluate the evidence linking them to observed toxic effects. Methodology for the characterization of reactive metabolites has advanced greatly in recent years, and is summarized first. Next, we consider the inhibition of key metabolic enzymes by electrophilic metabolites, as well as unfavorable drug-drug interactions that may ensue. One important class of protein-reactive metabolites, not linked conclusively to a toxic event, is acyl glucuronides. Their properties are discussed in light of the safety characteristics of carboxylic acid containing drugs. Many adverse drug reactions (ADRs) are known collectively as idiosyncratic events, that is, not predictable from knowledge of the pharmacology and pharmacokinetics of the parent compound. Observed ADRs may take various forms. Specific organ injury, particularly of the liver, is the most direct: we examine this in some detail. Moving to the cellular level, we also consider the upregulation of induced cellular processes. The related, but distinct, issue of hypersensitivity or allergic reactions to drugs and their metabolites, possibly via the immune system, is considered next. Finally, we discuss the impact of such data on the drug discovery process, both through early detection of reactive metabolites and informed synthetic design, which eliminates unfavorable functionality from drug candidates.


Asunto(s)
Diseño de Fármacos , Preparaciones Farmacéuticas/metabolismo , Animales , Investigación Biomédica , Sistema Enzimático del Citocromo P-450 , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Glucurónidos/metabolismo , Humanos
15.
J Biol Chem ; 287(13): 10556-10564, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22311972

RESUMEN

Dendritic cells (DCs) are critical mediators of immunity and immune tolerance by orchestrating multiple aspects of T cell activation and function. Immature DCs (iDCs) expressing low levels of co-stimulatory receptors are highly efficient at antigen capture but are poor activators of T cells. Maturation of DCs is associated with increased expression of co-stimulatory molecules. Co-stimulatory receptor gene expression is regulated by intracellular redox, NF-κB, and MAPK pathways and by histone deacetylase (HDAC) activity. The transcription factor, Nrf2, is important for maintaining intracellular glutathione (GSH) levels and redox homeostasis and has been implicated in modulating DC co-stimulatory receptor expression. It is unclear whether Nrf2 mediates this effect by GSH-dependent mechanisms and whether it influences DC signaling pathways. Using bone marrow-derived iDCs from Nrf2(+/+) and Nrf2(-/-) mice, we demonstrate that Nrf2(-/-) iDCs have lower basal GSH levels, enhanced co-stimulatory receptor expression, impaired phagocytic functions, and increased antigen-specific CD8 T cell stimulation capacity. Interestingly, lowering GSH levels in Nrf2(+/+) iDCs did not recapitulate the Nrf2(-/-) iDC phenotype. Loss of Nrf2 resulted in elevated basal levels of reactive oxygen species but did not affect basal NF-κB activity or p38 MAPK phosphorylation. Using pharmacological inhibitors, we demonstrate that enhanced co-stimulatory receptor phenotype of Nrf2(-/-) iDC does not require ERK activity but is dependent on HDAC activity, indicating a potential interaction between Nrf2 function and HDAC. These results suggest that Nrf2 activity is required to counter rises in intracellular reactive oxygen species and to regulate pathways that control DC co-stimulatory receptor expression.


Asunto(s)
Células Dendríticas/metabolismo , Homeostasis/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Linfocitos T CD8-positivos/metabolismo , Células Dendríticas/citología , Glutatión/genética , Glutatión/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Oxidación-Reducción , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
Br J Clin Pharmacol ; 75(4): 885-96, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22703588

RESUMEN

Amongst the different types of adverse drug reactions, drug-induced liver injury is the most prominent cause of patient morbidity and mortality. However, the current available hepatic model systems developed for evaluating safety have limited utility and relevance as they do not fully recapitulate a fully functional hepatocyte, and do not sufficiently represent the genetic polymorphisms present in the population. The rapidly advancing research in stem cells raises the possibility of using human pluripotent stem cells in bridging this gap. The generation of human induced pluripotent stem cells via reprogramming of mature human somatic cells may also allow for disease modelling in vitro for the purposes of assessing drug safety and toxicology. This would also allow for better understanding of disease processes and thus facilitate in the potential identification of novel therapeutic targets. This review will focus on the current state of effort to derive hepatocytes from human pluripotent stem cells for potential use in hepatotoxicity evaluation and aims to provide an insight as to where the future of the field may lie.


Asunto(s)
Diferenciación Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Evaluación Preclínica de Medicamentos/métodos , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Modelos Biológicos , Células Madre Pluripotentes/citología , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Células Madre Embrionarias/citología , Hepatocitos/enzimología , Hepatocitos/metabolismo , Humanos
17.
Biochem J ; 443(1): 213-22, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22188542

RESUMEN

Abnormal cellular accumulation of the dicarbonyl metabolite MG (methylglyoxal) occurs on exposure to high glucose concentrations, inflammation, cell aging and senescence. It is associated with increased MG-adduct content of protein and DNA linked to increased DNA strand breaks and mutagenesis, mitochondrial dysfunction and ROS (reactive oxygen species) formation and cell detachment from the extracellular matrix. MG-mediated damage is countered by glutathione-dependent metabolism by Glo1 (glyoxalase 1). It is not known, however, whether Glo1 has stress-responsive up-regulation to counter periods of high MG concentration or dicarbonyl stress. We identified a functional ARE (antioxidant-response element) in the 5'-untranslated region of exon 1 of the mammalian Glo1 gene. Transcription factor Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2) binds to this ARE, increasing basal and inducible expression of Glo1. Activators of Nrf2 induced increased Glo1 mRNA, protein and activity. Increased expression of Glo1 decreased cellular and extracellular concentrations of MG, MG-derived protein adducts, mutagenesis and cell detachment. Hepatic, brain, heart, kidney and lung Glo1 mRNA and protein were decreased in Nrf2-/- mice, and urinary excretion of MG protein and nucleotide adducts were increased approximately 2-fold. We conclude that dicarbonyl stress is countered by up-regulation of Glo1 in the Nrf2 stress-responsive system, protecting protein and DNA from increased damage and preserving cell function.


Asunto(s)
Productos Finales de Glicación Avanzada/metabolismo , Lactoilglutatión Liasa/genética , Factor 2 Relacionado con NF-E2/metabolismo , Piruvaldehído/metabolismo , Transcripción Genética , Animales , Secuencia de Bases , Adhesión Celular , Secuencia de Consenso , Daño del ADN , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Genes Reporteros , Células Hep G2 , Humanos , Lactoilglutatión Liasa/metabolismo , Luciferasas de Renilla/biosíntesis , Luciferasas de Renilla/genética , Masculino , Ratones , Ratones Noqueados , Mutagénesis , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo , Unión Proteica , Elementos de Respuesta
18.
Mol Pharm ; 9(5): 1291-301, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22480236

RESUMEN

PEGylation of therapeutic proteins is commonly used to extend half-lives and to reduce immunogenicity. However, reports of antibodies toward PEGylated proteins and of poly(ethylene glycol) (PEG) accumulation suggest that efficacy and safety concerns may arise. To understand the relationship among the pharmacology, immunogenicity, and toxicology of PEGylated proteins, we require knowledge of the disposition and metabolic fate of both the drug and the polymer moieties. The analysis of PEG by standard spectrophotometric or mass spectrometric techniques is problematic. Consequently, we have examined and compared two independent analytical approaches, based on gel electrophoresis and nuclear magnetic resonance (NMR) spectroscopy, to determine the biological fate of a model PEGylated protein, (40K)PEG-insulin, within a rat model. Both immunoblotting with an antibody to PEG and NMR analyses (LOD 0.5 µg/mL for both assays) indicated that the PEG moiety remained detectable for several weeks in both serum and urine following intravenous administration of (40K)PEG-insulin (4 mg/kg). In contrast, Western blotting with anti-insulin IgG indicated that the terminal half-life of the insulin moiety was far shorter than that of the PEG, providing clear evidence of conjugate cleavage. The application of combined analytical techniques in this way thus allows simultaneous independent monitoring of both protein and polymer elements of a PEGylated molecule. These methodologies also provide direct evidence for cleavage and definition of the chemical species present in biological fluids which may have toxicological consequences due to unconjugated PEG accumulation or immunogenic recognition of the uncoupled protein.


Asunto(s)
Polietilenglicoles/química , Proteínas/química , Proteínas/metabolismo , Animales , Western Blotting , Electroforesis en Gel de Poliacrilamida , Insulina/química , Espectroscopía de Resonancia Magnética , Masculino , Proteínas/farmacocinética , Ratas
19.
Int J Hyperthermia ; 28(1): 43-54, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22235784

RESUMEN

PURPOSE: This study assessed the relationship between time, power and ablation size using a novel high-frequency 14.5 GHz microwave applicator in ex vivo human hepatic parenchyma and colorectal liver metastases. Previous examination has demonstrated structurally normal but non-viable cells within the ablation zone. This study aimed to further investigate how ablation affects these cells, and to confirm non-viability. MATERIALS AND METHODS: Ablations were performed in ex vivo human hepatic parenchyma and tumour for a variety of time (10-180 s) and power (10-50 W) settings. Histological examination was performed to assess cellular anatomy, whilst enzyme histochemistry was used to confirm cellular non-viability. Transmission electron microscopy was used to investigate the subcellular structural effects of ablation within these fixed cells. Preliminary proteomic analysis was also performed to explore the mechanism of microwave cell death. RESULTS: Increasing time and power settings led to a predictable and reproducible increase in size of ablation. At 50 W and 180 s application, a maximum ablation diameter of 38.8 mm (±1.3) was produced. Ablations were produced rapidly, and at all time and power settings ablations remained spherical (longest:shortest diameter <1.2). Routine histological analysis using haematoxylin-eosin (H&E) confirmed well preserved cellular anatomy despite ablation. Transmission electron microscopy demonstrated marked subcellular damage. Enzyme histochemistry showed complete absence of viability in ablated tissue. CONCLUSIONS: Large spherical ablation zones can be rapidly and reproducibly achieved in ex vivo human hepatic parenchyma and colorectal liver metastases using a 14.5 GHz microwave generator. Despite well preserved cellular appearance, ablated tissue is non-viable.


Asunto(s)
Técnicas de Ablación , Neoplasias Hepáticas/cirugía , Hígado/cirugía , Microondas/uso terapéutico , Anciano , Neoplasias Colorrectales/patología , Femenino , Humanos , Hígado/patología , Neoplasias Hepáticas/secundario , Masculino , Persona de Mediana Edad
20.
J Biol Chem ; 285(22): 16782-8, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20378532

RESUMEN

Nrf2 regulates the expression of numerous cytoprotective genes in mammalian cells. The activity of Nrf2 is regulated by the Cul3 adaptor Keap1, yet little is known regarding mechanisms of regulation of Keap1 itself. Here, we have used immunopurification of Keap1 and mass spectrometry, in addition to immunoblotting, to identify sequestosome 1 (SQSTM1) as a cellular binding partner of Keap1. SQSTM1 serves as a scaffold in various signaling pathways and shuttles polyubiquitinated proteins to the proteasomal and lysosomal degradation machineries. Ectopic expression of SQSTM1 led to a decrease in the basal protein level of Keap1 in a panel of cells. Furthermore, RNA interference (RNAi) depletion of SQSTM1 resulted in an increase in the protein level of Keap1 and a concomitant decrease in the protein level of Nrf2 in the absence of changes in Keap1 or Nrf2 mRNA levels. The increased protein level of Keap1 in cells depleted of SQSTM1 by RNAi was linked to a decrease in its rate of degradation; the half-life of Keap1 was almost doubled by RNAi depletion of SQSTM1. The decreased level of Nrf2 in cells depleted of SQSTM1 by RNAi was associated with decreases in the mRNA levels, protein levels, and function of several Nrf2-regulated cell defense genes. SQSTM1 was dispensable for the induction of the Keap1-Nrf2 pathway, as Nrf2 activation by tert-butylhydroquinone or iodoacetamide was not affected by RNAi depletion of SQSTM1. These findings demonstrate a physical and functional interaction between Keap1 and SQSTM1 and reveal an additional layer of regulation in the Keap1-Nrf2 pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/fisiología , Factor 2 Relacionado con NF-E2/fisiología , Animales , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Lisosomas/metabolismo , Ratones , Modelos Biológicos , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Interferencia de ARN , Proteína Sequestosoma-1 , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA