Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Tissue Res ; 394(3): 431-439, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37851111

RESUMEN

A subset of gustatory cells are serotonin immunoreactive (ir) in the mammalian taste bud. In the taste bud of lamprey, elongated gustatory-like cells are also serotonin-ir. In contrast, flattened serotonin-ir cells are located only in the basal region of the taste buds in the teleosts and amphibians. These serotonin-ir cells are termed as basal cells. To evaluate the evolution and diversity of serotonergic cells in the taste bud of amniote animals, we explored the distribution and morphology of serotonin-ir cells in the taste buds of ancestral actinopterygian fish (spotted gar, sturgeon, Polypterus senegalus) and elasmobranch (stingray). In all examined animals, the taste buds contained serotonin-ir cells in their basal part. The number of serotonin-ir basal cells in each taste bud was different between these fish species. They were highest in the stingray and decreased in the order of the Polypterus, sturgeon, and gar. While serotonin immunoreactivity was observed only in the basal cells in the taste buds of the ancestral actinopterygian fish, some elongated cells were also serotonin-ir in addition to the basal cells in the stingray taste buds. mRNA of tryptophan hydroxylase 1 (tph1), a rate-limiting enzyme of the serotonin synthesis, is expressed in both the elongated and basal cells of stingray taste buds, indicating that these cells synthesize the serotonin by themselves. These results suggest that the serotonin-ir basal cells arose from the ancestor of the cartilaginous fish, and serotonin-ir cells in the elasmobranch taste bud exhibit an intermediate aspect between the lamprey and actinopterygian fish.


Asunto(s)
Elasmobranquios , Papilas Gustativas , Animales , Serotonina , Inmunohistoquímica , Peces , Lampreas , Mamíferos
2.
Brain Behav Evol ; 89(3): 209-218, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28502972

RESUMEN

The gustatory system of the sea catfish Plotosus japonicus, like that of other catfishes, is highly developed. To clarify the details of the morphology of the peripheral gustatory system of Plotosus, we used whole-mount immunohistochemistry to investigate the distribution and innervation of the taste buds within multiple organs including the barbels, oropharyngeal cavity, fins (pectoral, dorsal, and caudal), and trunk. Labeled taste buds could be observed in all the organs examined. The density of the taste buds was higher along the leading edges of the barbels and fins; this likely increases the chance of detecting food. In all the fins, the taste buds were distributed in linear arrays parallel to the fin rays. Labeling of nerve fibers by anti-acetylated tubulin antibody showed that the taste buds within each sensory field are innervated in different ways. In the barbels, large nerve bundles run along the length of the organ, with fascicles branching off to innervate polygonally organized groups of taste buds. In the fins, nerve bundles run along the axis of fin rays to innervate taste buds lying in a line. In each case, small fascicles of fibers branch from large bundles and terminate within the basal portions of the taste buds. Serotonin immunohistochemistry demonstrated that most of the taste buds in all the organs examined contained disk-shaped serotonin-immunopositive cells in their basal region. This indicates a similar organization of the taste buds, in terms of the existence of serotonin-immunopositive basal cells, across the different sensory fields in this species.


Asunto(s)
Bagres/fisiología , Papilas Gustativas/citología , Papilas Gustativas/fisiología , Animales , Bagres/genética , Inmunohistoquímica , Fibras Nerviosas/fisiología , Gusto/fisiología , Papilas Gustativas/patología
3.
Artículo en Inglés | MEDLINE | ID: mdl-20725728

RESUMEN

Feeding and locomotor activities of the Japanese catfish Plotosus japonicus under solitary condition were recorded to identify mechanisms controlling these behaviours. In the absence of food, the catfish showed nocturnal locomotor activity, but no feeding activity. Under ad libitum food conditions, both feeding and locomotor activities occurred during the dark period and were synchronized with light/dark (LD) cycles. Feeding activity lasted for 11-24 days when food was stopped after ad libitum food availability. Restricted food during the light phase produced both food-anticipatory and light-entrainable feeding activity. Furthermore, this condition produced weak food-anticipatory and light-entrainable locomotor activity. Under the light/light (LL) condition, restricted food produced food-anticipatory feeding and locomotor activities, suggesting that a food-entrainable oscillator controls both feeding and locomotor activities. However, under the LL condition, light-entrainable feeding and locomotor activities were not observed, suggesting that a light-entrainable oscillator controls both feeding and locomotor activities. During a restricted food schedule, LD cycle shifts resulted in disrupted synchronization of feeding activity onset in three of the four fish, but one fish showed synchronized feeding activity. These results suggest that the food- and the light-entrainable oscillator may control feeding and locomotor activities, respectively.


Asunto(s)
Relojes Biológicos/fisiología , Bagres/fisiología , Ritmo Circadiano/fisiología , Conducta Alimentaria/fisiología , Actividad Motora/fisiología , Animales , Señales (Psicología) , Femenino , Alimentos , Privación de Alimentos/fisiología , Masculino , Periodicidad , Estimulación Luminosa/métodos
4.
Physiol Behav ; 152(Pt A): 288-94, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26459116

RESUMEN

The Japanese sea catfish, Plotosus japonicus, possesses taste and solitary chemoreceptor cells (SCCs) located on the external body surface that detect specific water-soluble substances. Here, we identify two major fiber types of the facial/trigeminal complex that transmit amino acid information to the medulla. Both single and few fiber preparations respond to amino acid stimulation in the 0.1 µM to mM range. One fiber type responds best to glycine and l-alanine (i.e. Gly/Ala fibers) whereas the other fiber type is best stimulated by l-proline and glycine betaine (hereafter referred to only as betaine) (i.e. Pro/Bet fibers). We demonstrate that betaine, which does not alter the pH of the seawater and therefore does not activate the animals' highly sensitive pH sensors (Caprio et al., Science 344:1154-1156, 2014), is sufficient to elicit appetitive food search behavior. We further show that the amino acid specificity of fibers of the facial/trigeminal complex in P. japonicus is different from that in Ariopsis felis (Michel and Caprio, J. Neurophysiol. 66:247-260, 1991; Michel et al., J. Comp. Physiol. A. 172:129-138, 1993), a representative member of the only other family (Ariidae) of extant marine catfishes.


Asunto(s)
Aminoácidos/metabolismo , Bagres/fisiología , Células Quimiorreceptoras/fisiología , Nervio Facial/fisiología , Gusto/fisiología , Potenciales de Acción , Animales , Conducta Apetitiva/fisiología , Bagres/anatomía & histología , Células Quimiorreceptoras/citología , Nervio Facial/citología , Conducta Alimentaria/fisiología , Concentración de Iones de Hidrógeno , Órbita , Estimulación Física , Agua de Mar/química , Especificidad de la Especie
5.
Proc Biol Sci ; 269(1502): 1773-80, 2002 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-12350264

RESUMEN

Goatfish use a pair of large chin barbels to probe the sea bottom to detect buried prey. The barbels are studded with taste buds but little else is known about the neural organization of this system. We found that the taste buds of the barbel are innervated in a strict orthogonal fashion. The barbel is innervated by a main nerve trunk running in the core of the barbel. A longitudinal nerve bundle originates from the main trunk and, after running a short distance distally, divides into two circumferential nerve bundles (CNB) extending respectively, medially and laterally around the barbel. Approximately 15 CNBs innervate each 1 mm length of barbel. At each transverse level, the CNB innervates two clusters of taste buds, each containing 14 end-organs. The primary taste centre in the brain is similarly extraordinary. The sensory inputs from the barbel terminate in a derived dorsal facial lobe, which has a highly convoluted surface forming a multitude of tubercles. Electrophysiological mapping experiments show that the entire barbel is somatotopically represented in a recurved elongate tubular fashion within the dorsal facial lobe.


Asunto(s)
Peces/anatomía & histología , Papilas Gustativas/anatomía & histología , Animales , Encéfalo/anatomía & histología , Encéfalo/fisiología , Electrofisiología , Peces/fisiología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Papilas Gustativas/fisiología
6.
Science ; 344(6188): 1154-6, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24904164

RESUMEN

We report that the Japanese sea catfish Plotosus japonicus senses local pH-associated increases in H(+)/CO2 equating to a decrease of ≤0.1 pH unit in ambient seawater. We demonstrated that these sensors, located on the external body of the fish, detect undamaged cryptic respiring prey, such as polychaete worms. Sensitivity is maximal at the natural pH of seawater (pH 8.1 to 8.2) and decreases dramatically in seawater with a pH <8.0.


Asunto(s)
Bagres/fisiología , Conducta Alimentaria/fisiología , Alimentos , Percepción , Agua de Mar/química , Animales , Concentración de Iones de Hidrógeno , Japón , Océanos y Mares , Poliquetos
7.
Open Biol ; 3(3): 130015, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23466675

RESUMEN

Taste buds are gustatory endorgans which use an uncommon purinergic signalling system to transmit information to afferent gustatory nerve fibres. In mammals, ATP is a crucial neurotransmitter released by the taste cells to activate the afferent nerve fibres. Taste buds in mammals display a characteristic, highly specific ecto-ATPase (NTPDase2) activity, suggesting a role in inactivation of the neurotransmitter. The purpose of this study was to test whether the presence of markers of purinergic signalling characterize taste buds in anamniote vertebrates and to test whether similar purinergic systems are employed by other exteroceptive chemosensory systems. The species examined include several teleosts, elasmobranchs, lampreys and hagfish, the last of which lacks vertebrate-type taste buds. For comparison, Schreiner organs of hagfish and solitary chemosensory cells (SCCs) of teleosts, both of which are epidermal chemosensory end organs, were also examined because they might be evolutionarily related to taste buds. Ecto-ATPase activity was evident in elongate cells in all fish taste buds, including teleosts, elasmobranchs and lampreys. Neither SCCs nor Schreiner organs show specific ecto-ATPase activity, suggesting that purinergic signalling is not crucial in those systems as it is for taste buds. These findings suggest that the taste system did not originate from SCCs but arose independently in early vertebrates.


Asunto(s)
Papilas Gustativas/enzimología , Adenosina Trifosfatasas/metabolismo , Animales , Evolución Biológica , Peces/metabolismo , Inmunohistoquímica , Transducción de Señal , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA