RESUMEN
Sacral Tarlov cysts (TCs), often asymptomatic, can cause significant pain and severe neurological dysfunction. Conventional treatments are generally associated with high recurrence and complication rates. Specifically, the substantial recurrence rates, which can reach as high as 50%, significantly impact long-term outcomes. Recent evidence increasingly supports the hypothesis that the formation of Tarlov cysts (TCs) may be associated with inflammatory processes within the nerve root sheath, further exacerbated by elevated cerebrospinal fluid (CSF) pressure. This retrospective study explores thecaloscopy, combined with surgical techniques, as a more effective alternative. We observed a total of 78 patients, 48 of whom underwent endoscopic fenestration of the arachnoid sheath in addition to microsurgical resection of the TC. We found that the fenestration of the arachnoid sheath at the level of lumbosacral spinal nerve root entry led to a significantly decreased risk of developing recurrent TCs (5/48 vs. 9/30). Only one of the patients suffered from a persistent new bladder dysfunction after microsurgical resection. This presented technique provides a promising treatment path for the future management of TCs, offering a safe and more effective treatment option compared to previous methods. Additionally, the advantages of the thecaloscopy provide pathophysiological implications regarding the development of perineural cysts.
RESUMEN
Loss of heterozygosity (LOH) on chromosome arm 10p is very common in high-grade gliomas and is, among others, concentrated on the region 10p14-p15. Presence of multiple tumor suppressor genes is assumed, but until now only Krüpple-like transcription factor 6 (KLF6) has been suggested as possible target of LOH in this region. On the basis of the fact that the splice variant 4 (UBI2K4) of the PFKFB3 gene, located in 10p15.1, inhibits the anchorage-independent growth of U87 glioblastoma cells, we hypothesized that PFKFB3 is a target gene of LOH in glioblastomas. In this study, we analyzed 40 glioblastomas for LOH in 10p15, including the PFKFB3 and KLF6 loci, by PCR-based microsatellite analysis. We detected LOH of PFKFB3 in 55% (22/40) of glioblastomas. LOH of KLF6, mapped 2.5 cM telomerically to the PFKFB3 locus, was not stringently correlated to the PFKFB3 LOH. The allelic deletion of PFKFB3 resulted in a decrease of PFKFB3 mRNA level accompanied by a lower PFKFB3 protein level. The expression of growth-inhibiting splice variant UBI2K4 was effectively reduced in glioblastomas with PFKFB3 LOH and a positive correlation with overall PFKFFB3 expression was observed. The PFKFB3 LOH as well as the resulting low UBI2K4 expression level was associated with a poor prognosis of glioblastoma patients. We conclude that LOH on 10p14-p15 in glioblastomas targets PFKFB3 and in particular splice variant UBI2K4, a putative tumor suppressor protein in glioblastomas.