Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Phys Rev Lett ; 130(19): 198301, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37243650

RESUMEN

We study a two-dimensional, nonreciprocal XY model, where each spin interacts only with its nearest neighbors in a certain angle around its current orientation, i.e., its "vision cone." Using energetic arguments and Monte Carlo simulations, we show that a true long-range ordered phase emerges. A necessary ingredient is a configuration-dependent bond dilution entailed by the vision cones. Strikingly, defects propagate in a directional manner, thereby breaking the parity and time-reversal symmetry of the spin dynamics. This is detectable by a nonzero entropy production rate.

2.
Phys Rev Lett ; 128(4): 048004, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35148157

RESUMEN

Turbulent vortex structures emerging in bacterial active fluids can be organized into regular vortex lattices by weak geometrical constraints such as obstacles. Here we show, using a continuum-theoretical approach, that the formation and destruction of these patterns exhibit features of a continuous second-order equilibrium phase transition, including long-range correlations, divergent susceptibility, and critical slowing down. The emerging vorticity field can be mapped onto a two-dimensional (2D) Ising model with antiferromagnetic nearest-neighbor interactions by coarse graining. The resulting effective temperature is found to be proportional to the strength of the nonlinear advection in the continuum model.

3.
Soft Matter ; 18(29): 5388-5401, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35797661

RESUMEN

We present a hydrodynamic theory for systems of dipolar active Brownian particles which, in the regime of weak dipolar coupling, predicts the onset of motility-induced phase separation (MIPS), consistent with Brownian dynamics (BD) simulations. The hydrodynamic equations are derived by explicitly coarse-graining the microscopic Langevin dynamics, thus allowing for a mapping of the coarse-grained model and particle-resolved simulations. Performing BD simulations at fixed density, we find that dipolar interactions tend to hinder MIPS, as first reported in [Liao et al., Soft Matter, 2020, 16, 2208]. Here we demonstrate that the theoretical approach indeed captures the suppression of MIPS. Moreover, the analysis of the numerically obtained, angle-dependent correlation functions sheds light into the underlying microscopic mechanisms leading to the destabilization of the homogeneous phase.

4.
Soft Matter ; 17(28): 6833-6847, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34223596

RESUMEN

Using Brownian dynamics (BD) simulations we investigate the self-organization of a monolayer of chiral active particles with dipolar interactions. Each particle is driven by both, translational and rotational self-propulsion, and carries a permanent point dipole moment at its center. The direction of the translational propulsion for each particle is chosen to be parallel to its dipole moment. Simulations are performed at high dipolar coupling strength and a density below that related to motility-induced phase separation in simple active Brownian particles. Despite this restriction, we observe a wealth of phenomena including formation of two types of vortices, phase separation, and flocking transitions. To understand the appearance and disappearance of vortices in the many-particle system, we further investigate the dynamics of simple ring structures under the impact of self-propulsion.

5.
Entropy (Basel) ; 23(6)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073091

RESUMEN

Many natural and artificial systems are subject to some sort of delay, which can be in the form of a single discrete delay or distributed over a range of times. Here, we discuss the impact of this distribution on (thermo-)dynamical properties of time-delayed stochastic systems. To this end, we study a simple classical model with white and colored noise, and focus on the class of Gamma-distributed delays which includes a variety of distinct delay distributions typical for feedback experiments and biological systems. A physical application is a colloid subject to time-delayed feedback control, which is, in principle, experimentally realizable by co-moving optical traps. We uncover several unexpected phenomena in regard to the system's linear stability and its thermodynamic properties. First, increasing the mean delay time can destabilize or stabilize the process, depending on the distribution of the delay. Second, for all considered distributions, the heat dissipated by the controlled system (e.g., the colloidal particle) can become negative, which implies that the delay force extracts energy and entropy of the bath. As we show here, this refrigerating effect is particularly pronounced for exponential delay. For a specific non-reciprocal realization of a control device, we find that the entropic costs, measured by the total entropy production of the system plus controller, are the lowest for exponential delay. The exponential delay further yields the largest stable parameter regions. In this sense, exponential delay represents the most effective and robust type of delayed feedback.

6.
Soft Matter ; 16(41): 9423-9435, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-32914813

RESUMEN

Based on (overdamped) Stokesian dynamics simulations and video microscopy experiments, we study the non equilibrium dynamics of a sheared colloidal cluster, which is confined to a two-dimensional disk. The experimental system is composed of a mixture of paramagnetic and non magnetic polystyrene particles, which are held in the disk by time shared optical tweezers. The paramagnetic particles are located at the center of the disk and are actuated by an external, rotating magnetic field that induces a magnetic torque. We identify two different steady states by monitoring the mean angular velocities per ring. The first one is characterized by rare slip events, where the inner rings momentarily depin from the outer ring, which is kept static by the set of optical traps. For the second state, we find a bistability of the mean angular velocities, which can be understood from the analysis of the slip events in the particle trajectories. We calculate the particle waiting- and jumping time distributions and estimate a time scale between slips, which is also reflected by a plateau in the mean squared azimuthal displacement. The dynamical transition is further reflected by the components of the stress tensor, revealing a shear-thinning behavior as well as shear stress overshoots. Finally, we briefly discuss the observed transition in the context of stochastic thermodynamics and how it may open future directions in this field.

7.
Soft Matter ; 16(47): 10667-10675, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33084728

RESUMEN

Using computer simulations we explore the equilibrium structure and response to external stimuli of complex magnetic hybrids consisting of magnetic particles in discotic liquid crystalline matrices. We show that the anisotropy of the liquid crystalline matrix (either in the nematic or in the columnar phase) promotes the collective orientational ordering of self-assembled magnetic particles. Upon applying an external homogeneous magnetic field in an otherwise isotropic state, the magnetic particles self-assemble into linear-rodlike-chains. At the same time structural changes occur in the matrix. The matrix transforms from an isotropic to a non-conventional anti-nematic state in which the symmetry axis of the discs is, on average, perpendicular to the magnetic field. In addition, a stable biaxial nematic state is found upon applying an external field to an otherwise uniaxial discotic nematic state. These observed morphologies constitute an appealing alternative to binary mixtures of rigid rod-disc system and indicate that non-trivial biaxial ordering can be obtained in the presence of a uniaxial external stimulus.

8.
Soft Matter ; 16(9): 2208-2223, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32090218

RESUMEN

Based on Brownian Dynamics (BD) simulations, we study the dynamical self-assembly of active Brownian particles with dipole-dipole interactions, stemming from a permanent point dipole at the particle center. The propulsion direction of each particle is chosen to be parallel to its dipole moment. We explore a wide range of motilities and dipolar coupling strengths and characterize the corresponding behavior based on several order parameters. At low densities and low motilities, the most important structural phenomenon is the aggregation of the dipolar particles into chains. Upon increasing the particle motility, these chain-like structures break, and the system transforms into a weakly correlated isotropic fluid. At high densities, we observe that the motility-induced phase separation is strongly suppressed by the dipolar coupling. Once the dipolar coupling dominates the thermal energy, the phase separation disappears, and the system rather displays a flocking state, where particles form giant clusters and move collective along one direction. We provide arguments for the emergence of the flocking behavior, which is absent in the passive dipolar system.

9.
Soft Matter ; 16(10): 2516-2527, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32068218

RESUMEN

Using non-equilibrium molecular dynamics simulations, we study the rheology of a model hybrid mixture of liquid crystals (LCs) and dipolar soft spheres (DSS) representing magnetic nanoparticles. The bulk isotropic LC-DSS mixture is sheared with different shear rates using Lees-Edwards periodic boundary conditions. The steady-state rheological properties and the effect of the shear on the microstructure of the mixture are studied for different strengths of the dipolar coupling, λ, among the DSS. We find that at large shear rates, the mixture shows a shear-thinning behavior for all considered values of λ. At low and intermediate values of λ, a crossover from Newtonian to non-Newtonian behavior is observed as the rate of applied shear is increased. In contrast, for large values of λ, such a crossover is not observed within the range of shear rates considered. Also, the extent of the non-Newtonian regime increases as λ is increased. These features can be understood via the shear-induced changes of the microstructure. In particular, the LCs display a shear-induced isotropic-to-nematic transition at large shear rates with a shear-rate dependent degree of nematic ordering. The DSS show a shear-induced nematic ordering only for large values of λ, where the particles self-assemble into chains. Moreover, at large λ and low shear rates, our simulations indicate that the DSS form ferromagnetic domains.

10.
Soft Matter ; 16(27): 6443, 2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32617546

RESUMEN

Correction for 'Dynamical self-assembly of dipolar active Brownian particles in two dimensions' by Guo-Jun Liao et al., Soft Matter, 2020, 16, 2208-2223, DOI: .

11.
Soft Matter ; 16(15): 3779-3791, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32239046

RESUMEN

The self-assembly of colloidal particles in dynamic environments has become an important field of study because of potential applications in fabricating out-of-equilibrium materials. We investigate the phase behavior of mixtures of passive dipolar colloids and active soft spheres using Brownian dynamics simulations in two dimensions. The phase behaviors exhibited include dipolar percolated network, dipolar string-fluid, isotropic fluid, and a phase-separated state. We find that the clustering of dipolar colloids is enhanced in the presence of slow-moving active particles compared to the clustering of dipolar particles mixed with passive particles. When the active particle motility is high, the chains of dipolar particles are either broken into short chains or pushed into dense clusters. Motility-induced phase separation into dense and dilute phases is also present. The area fraction of particles in the dilute phase increases as the fraction of active particles in the system decreases, while the area fraction of particles in the dense phase remains constant. Our findings are relevant to the development of reconfigurable self-assembled materials.

12.
J Chem Phys ; 152(2): 024505, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31941341

RESUMEN

Utilizing molecular dynamics simulations, we report a nonmonotonic dependence of the shear stress on the strength of a continuously increasing (i.e., time-varying) external magnetic field (H) in a liquid-crystalline mixture of magnetic and nonmagnetic anisotropic particles. We relate the origin of this nonmonotonicity of the transient dynamics to the competing effects of particle alignment along the shear-induced direction, on the one hand, and the magnetic field direction, on the other hand. To isolate the role of these competing effects, we consider a two-component mixture composed of particles with effectively identical steric interactions, where the orientations of a small fraction, i.e., the magnetic ones, are coupled to the external magnetic field. By increasing H from zero, the orientations of the magnetic particles show a Fréederickz-like transition and eventually start deviating from the shear-induced orientation, leading to an increase in shear stress. Upon further increase of H, a demixing of the magnetic particles from the nonmagnetic ones occurs, which leads to a drop in shear stress, hence creating a nonmonotonic response to H. Unlike the equilibrium demixing phenomena reported in previous studies, the demixing observed here is neither due to size-polydispersity nor due to a wall-induced nematic transition. Based on a simplified Onsager analysis, we rather argue that it occurs solely due to packing entropy of particles with different shear- or magnetic-field-induced orientations.

13.
Soft Matter ; 15(5): 973-982, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30652721

RESUMEN

We report an extensive molecular dynamics study on the translational dynamics of a hybrid system composed of dipolar soft spheres (DSS), representing ferromagnetic particles, suspended in a liquid crystal (LC) matrix. We observe that the LC matrix strongly modifies the dynamics of the DSS. In the isotropic regime, the DSS show a crossover from subdiffusive to normal diffusive behavior at long times, with an increase of the subdiffusive regime as the dipolar coupling strength is increased. In the nematic regime, the LC matrix, due to the collective reorientation of LC particles, imposes a cylindrical confinement on the DSS chains. This leads to a diffusive dynamics of DSS along the nematic director and a subdiffusive dynamics (with an exponent of ∼0.5) in the perpendicular direction. The confinement provided by the LC matrix is also reflected by the oscillatory behavior of the components of the velocity autocorrelation function of the DSS in the nematic phase.

14.
Phys Chem Chem Phys ; 21(25): 13776-13787, 2019 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31210204

RESUMEN

We explore theoretically the navigation of an active particle based on delayed feedback control. The delayed feedback enters in our expression for the particle orientation which, for an active particle, determines (up to noise) the direction of motion in the next time step. Here we estimate the orientation by comparing the delayed position of the particle with the actual one. This method does not require any real-time monitoring of the particle orientation and may thus be relevant also for controlling sub-micron sized particles, where the imaging process is not easily feasible. We apply the delayed feedback strategy to two experimentally relevant situations, namely, optical trapping and photon nudging. To investigate the performance of our strategy, we calculate the mean arrival time analytically (exploiting a small-delay approximation) and by simulations.

16.
Soft Matter ; 14(38): 7873-7882, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30221296

RESUMEN

We perform Brownian dynamics simulations in two dimensions to study the collective behavior of circle swimmers, which are driven by both, an (effective) translational and rotational self-propulsion, and interact via steric repulsion. We find that active rotation generally opposes motility-induced clustering and phase separation, as demonstrated by a narrowing of the coexistence region upon increase of the propulsion angular velocity. Moreover, although the particles are intrinsically assigned to rotate counterclockwise, a novel state of clockwise vortices emerges at an optimal value of the effective propulsion torque. We propose a simple gear-like model to capture the underlying mechanism of the clockwise vortices.

17.
Soft Matter ; 14(24): 5121-5129, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29877539

RESUMEN

We investigate the dynamics and rheological properties of a circular colloidal cluster that is continuously sheared by magnetic and optical torques in a two-dimensional (2D) Taylor-Couette geometry. By varying the two driving fields, we obtain the system flow diagram and report the velocity profiles along the colloidal structure. We then use the inner magnetic trimer as a microrheometer, and observe continuous thinning of all particle layers followed by thickening of the third one above a threshold field. Experimental data are supported by Brownian dynamics simulations. Our approach gives a unique microscopic view on how the structure of strongly confined colloidal matter weakens or strengthens upon shear, envisioning the engineering of rheological devices at the microscales.

18.
Soft Matter ; 13(17): 3134-3146, 2017 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-28397900

RESUMEN

A major research theme in materials science is determining how the self-assembly of new generations of colloidal particles of complex shape and surface charge is guided by their interparticle interactions. In this paper, we describe results from quasi-2D Monte Carlo simulations of systems of colloidal particles with offset transversely-oriented extended dipole-like charge distributions interacting via an intermediate-ranged Yukawa potential. The systems are cooled slowly through an annealing procedure during which the temperature is lowered in discrete steps, allowing the system to equilibrate. We perform ground state calculations for two, three and four particles at several shifts of the dipole vector from the particle center. We create state diagrams in the plane spanned by the temperature and the area fraction outlining the boundaries between fluid, string-fluid and percolated states at various values of the shift. Remarkably we find that the effective cooling rate in our simulations has an impact on the structures formed, with chains being more prevalent if the system is cooled quickly and cyclic structures more prevalent if the system is cooled slowly. As the dipole is further shifted from the center, there is an increased tendency to assemble into small cyclic structures at intermediate temperatures. These systems further self-assemble into open lattice-like arrangements at very low temperatures. The novel structures identified might be useful for photonic applications, new types of porous media for filtration and catalysis, and gel matrices with unusual properties.

19.
J Chem Phys ; 146(16): 164107, 2017 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-28456203

RESUMEN

We investigate and provide optimal sets of reaction coordinates for mixed pairs of molecules displaying polar, uniaxial, or spherical symmetry in two and three dimensions. These coordinates are non-redundant, i.e., they implicitly involve the molecules' symmetries. By tabulating pair interactions in these coordinates, resulting tables are thus minimal in length and require a minimal memory space. The intended fields of application are computer simulations of large ensembles of molecules or colloids with rather complex interactions in a fluid or liquid crystalline phase at low densities. Using effective interactions directly in the form of tables can help bridging the time and length scales without introducing errors stemming from any modeling procedure. Finally, we outline an exemplary computational methodology for gaining an effective pair potential in these coordinates, based on the Boltzmann inversion principle, by providing a step-by-step recipe.

20.
Langmuir ; 32(20): 5085-93, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27119202

RESUMEN

Using experiments and molecular dynamics simulations, we explore magnetic field-induced phase transformations in suspensions of nonmagnetic rodlike and magnetic sphere-shaped particles. We experimentally demonstrate that an external uniform magnetic field causes the formation of small, stable clusters of magnetic particles that, in turn, induce and control the orientational order of the nonmagnetic subphase. Optical birefringence was studied as a function of the magnetic field and the volume fractions of each particle type. Steric transfer of the orientational order was investigated by molecular dynamics (MD) simulations; the results are in qualitative agreement with the experimental observations. By reproducing the general experimental trends, the MD simulation offers a cohesive bottom-up interpretation of the physical behavior of such systems, and it can also be regarded as a guide for further experimental research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA