Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Nano ; 18(32): 21024-21037, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39087909

RESUMEN

Virus-like particles (VLPs) have untapped potential for packaging and delivery of macromolecular cargo. To be a broadly useful platform, there needs to be a strategy for attaching macromolecules to the inside or the outside of the VLP with minimal modification of the platform or cargo. Here, we repurpose antiviral compounds that bind to hepatitis B virus (HBV) capsids to create a chemical tag to noncovalently attach cargo to the VLP. Our tag consists of a capsid assembly modulator, HAP13, connected to a linker terminating in maleimide. Our cargo is a green fluorescent protein (GFP) with a single addressable cysteine, a feature that can be engineered in many proteins. The HAP-GFP construct maintained HAP's intrinsic ability to bind HBV capsids and accelerate assembly. We investigated the capacity of HAP-GFP to coassemble with HBV capsid protein and bind to preassembled capsids. HAP-GFP binding was concentration-dependent, sensitive to capsid stability, and dependent on linker length. Long linkers had the greatest activity to bind capsids, while short linkers impeded assembly and damaged intact capsids. In coassembly reactions, >20 HAP-GFP molecules were presented on the outside and inside of the capsid, concentrating the cargo by more than 100-fold compared to bulk solution. We also tested an HAP-GFP with a cleavable linker so that external GFP molecules could be removed, resulting in exclusive internal packaging. These results demonstrate a generalizable strategy for attaching cargo to a VLP, supporting development of HBV as a modular VLP platform.


Asunto(s)
Cápside , Proteínas Fluorescentes Verdes , Virus de la Hepatitis B , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/química , Cápside/química , Cápside/metabolismo , Ensamble de Virus , Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Virión/metabolismo , Virión/química , Propiedades de Superficie
2.
Virology ; 600: 110211, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39276669

RESUMEN

Human Papillomavirus serotype 16 (HPV16) capsid protein (L1) pentamers canonically assemble into T = 7 icosahedral capsids. Such virus-like particles are the basis of the HPV vaccine. We examined assembly of L1 pentamers in response to pH, mild oxidants, and ionic strength and found a mixture of closed, roughly spherical structures from ∼20 to ∼70 nm in diameter, indicating the presence of many kinetically accessible energy minima. Using bulk and single particle techniques we observed that the size distribution changes but does not reach homogeneity. Though heterogenous in size, particles showed uniform responses to low ionic strength dissociation, thermal unfolding, and susceptibility to protease digestion. These assays suggest maturation over time, but at different rates. Cysteine oxidation further stabilized particles at early, but not late, times without changing general characteristics including thermal stability and protease digestion. These data show complex assembly paths to species of different sizes, but with locally similar interactions.

3.
Sci Adv ; 10(2): eadi7606, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38198557

RESUMEN

Nuclear import of the hepatitis B virus (HBV) nucleocapsid is essential for replication that occurs in the nucleus. The ~360-angstrom HBV capsid translocates to the nuclear pore complex (NPC) as an intact particle, hijacking human importins in a reaction stimulated by host kinases. This paper describes the mechanisms of HBV capsid recognition by importins. We found that importin α1 binds a nuclear localization signal (NLS) at the far end of the HBV coat protein Cp183 carboxyl-terminal domain (CTD). This NLS is exposed to the capsid surface through a pore at the icosahedral quasi-sixfold vertex. Phosphorylation at serine-155, serine-162, and serine-170 promotes CTD compaction but does not affect the affinity for importin α1. The binding of 30 importin α1/ß1 augments HBV capsid diameter to ~620 angstroms, close to the maximum size trafficable through the NPC. We propose that phosphorylation favors CTD externalization and prompts its compaction at the capsid surface, exposing the NLS to importins.


Asunto(s)
Virus de la Hepatitis B , Nucleocápside , Humanos , Transporte Activo de Núcleo Celular , Carioferinas , Proteínas de la Cápside , Factores Inmunológicos , Serina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA