Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(35): e202207002, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-35799379

RESUMEN

The broad implementation of thermoelectricity requires high-performance and low-cost materials. One possibility is employing surfactant-free solution synthesis to produce nanopowders. We propose the strategy of functionalizing "naked" particles' surface by inorganic molecules to control the nanostructure and, consequently, thermoelectric performance. In particular, we use bismuth thiolates to functionalize surfactant-free SnTe particles' surfaces. Upon thermal processing, bismuth thiolates decomposition renders SnTe-Bi2 S3 nanocomposites with synergistic functions: 1) carrier concentration optimization by Bi doping; 2) Seebeck coefficient enhancement and bipolar effect suppression by energy filtering; and 3) lattice thermal conductivity reduction by small grain domains, grain boundaries and nanostructuration. Overall, the SnTe-Bi2 S3 nanocomposites exhibit peak z T up to 1.3 at 873 K and an average z T of ≈0.6 at 300-873 K, which is among the highest reported for solution-processed SnTe.

2.
Chem Mater ; 34(19): 8471-8489, 2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36248227

RESUMEN

Thermoelectric technology requires synthesizing complex materials where not only the crystal structure but also other structural features such as defects, grain size and orientation, and interfaces must be controlled. To date, conventional solid-state techniques are unable to provide this level of control. Herein, we present a synthetic approach in which dense inorganic thermoelectric materials are produced by the consolidation of well-defined nanoparticle powders. The idea is that controlling the characteristics of the powder allows the chemical transformations that take place during consolidation to be guided, ultimately yielding inorganic solids with targeted features. Different from conventional methods, syntheses in solution can produce particles with unprecedented control over their size, shape, crystal structure, composition, and surface chemistry. However, to date, most works have focused only on the low-cost benefits of this strategy. In this perspective, we first cover the opportunities that solution processing of the powder offers, emphasizing the potential structural features that can be controlled by precisely engineering the inorganic core of the particle, the surface, and the organization of the particles before consolidation. We then discuss the challenges of this synthetic approach and more practical matters related to solution processing. Finally, we suggest some good practices for adequate knowledge transfer and improving reproducibility among different laboratories.

3.
Angew Chem Weinheim Bergstr Ger ; 134(35): e202207002, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-38505739

RESUMEN

The broad implementation of thermoelectricity requires high-performance and low-cost materials. One possibility is employing surfactant-free solution synthesis to produce nanopowders. We propose the strategy of functionalizing "naked" particles' surface by inorganic molecules to control the nanostructure and, consequently, thermoelectric performance. In particular, we use bismuth thiolates to functionalize surfactant-free SnTe particles' surfaces. Upon thermal processing, bismuth thiolates decomposition renders SnTe-Bi2S3 nanocomposites with synergistic functions: 1) carrier concentration optimization by Bi doping; 2) Seebeck coefficient enhancement and bipolar effect suppression by energy filtering; and 3) lattice thermal conductivity reduction by small grain domains, grain boundaries and nanostructuration. Overall, the SnTe-Bi2S3 nanocomposites exhibit peak z T up to 1.3 at 873 K and an average z T of ≈0.6 at 300-873 K, which is among the highest reported for solution-processed SnTe.

4.
Adv Mater ; 33(52): e2106858, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34626034

RESUMEN

Solution synthesis of particles emerges as an alternative to prepare thermoelectric materials with less demanding processing conditions than conventional solid-state synthetic methods. However, solution synthesis generally involves the presence of additional molecules or ions belonging to the precursors or added to enable solubility and/or regulate nucleation and growth. These molecules or ions can end up in the particles as surface adsorbates and interfere in the material properties. This work demonstrates that ionic adsorbates, in particular Na+ ions, are electrostatically adsorbed in SnSe particles synthesized in water and play a crucial role not only in directing the material nano/microstructure but also in determining the transport properties of the consolidated material. In dense pellets prepared by sintering SnSe particles, Na remains within the crystal lattice as dopant, in dislocations, precipitates, and forming grain boundary complexions. These results highlight the importance of considering all the possible unintentional impurities to establish proper structure-property relationships and control material properties in solution-processed thermoelectric materials.

5.
ACS Energy Lett ; 6(2): 581-587, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33614964

RESUMEN

Cesium lead halides have intrinsically unstable crystal lattices and easily transform within perovskite and nonperovskite structures. In this work, we explore the conversion of the perovskite CsPbBr3 into Cs4PbBr6 in the presence of PbS at 450 °C to produce doped nanocrystal-based composites with embedded Cs4PbBr6 nanoprecipitates. We show that PbBr2 is extracted from CsPbBr3 and diffuses into the PbS lattice with a consequent increase in the concentration of free charge carriers. This new doping strategy enables the adjustment of the density of charge carriers between 1019 and 1020 cm-3, and it may serve as a general strategy for doping other nanocrystal-based semiconductors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA