Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Immunol ; 206(6): 1395-1404, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33547170

RESUMEN

Myeloid-derived suppressor cells (MDSCs) are immune suppressive cells that massively accumulate under pathological conditions to suppress T cell immune response. Dysregulated cell death contributes to MDSC accumulation, but the molecular mechanism underlying this cell death dysregulation is not fully understood. In this study, we report that neutral ceramidase (N-acylsphingosine amidohydrolase [ASAH2]) is highly expressed in tumor-infiltrating MDSCs in colon carcinoma and acts as an MDSC survival factor. To target ASAH2, we performed molecular docking based on human ASAH2 protein structure. Enzymatic inhibition analysis of identified hits determined NC06 as an ASAH2 inhibitor. Chemical and nuclear magnetic resonance analysis determined NC06 as 7-chloro-2-(3-chloroanilino)pyrano[3,4-e][1,3]oxazine-4,5-dione. NC06 inhibits ceramidase activity with an IC50 of 10.16-25.91 µM for human ASAH2 and 18.6-30.2 µM for mouse Asah2 proteins. NC06 induces MDSC death in a dose-dependent manner, and inhibition of ferroptosis decreased NC06-induced MDSC death. NC06 increases glutathione synthesis and decreases lipid reactive oxygen species to suppress ferroptosis in MDSCs. Gene expression profiling identified the p53 pathway as the Asah2 target in MDSCs. Inhibition of Asah2 increased p53 protein stability to upregulate Hmox1 expression to suppress lipid reactive oxygen species production to suppress ferroptosis in MDSCs. NC06 therapy increases MDSC death and reduces MDSC accumulation in tumor-bearing mice, resulting in increased activation of tumor-infiltrating CTLs and suppression of tumor growth in vivo. Our data indicate that ASAH2 protects MDSCs from ferroptosis through destabilizing p53 protein to suppress the p53 pathway in MDSCs in the tumor microenvironment. Targeting ASAH2 with NC06 to induce MDSC ferroptosis is potentially an effective therapy to suppress MDSC accumulation in cancer immunotherapy.


Asunto(s)
Neoplasias del Colon/inmunología , Hemo-Oxigenasa 1/metabolismo , Proteínas de la Membrana/metabolismo , Ceramidasa Neutra/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral/trasplante , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Femenino , Ferroptosis/efectos de los fármacos , Ferroptosis/inmunología , Humanos , Concentración 50 Inhibidora , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Ratones , Simulación del Acoplamiento Molecular , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Ceramidasa Neutra/antagonistas & inhibidores , Ceramidasa Neutra/genética , Estabilidad Proteica/efectos de los fármacos , RNA-Seq , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T/inmunología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
2.
Cell Immunol ; 360: 104260, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33352466

RESUMEN

The majority of human colorectal cancer remains resistant to immune checkpoint inhibitor (ICI) immunotherapy, but the underlying mechanism is incompletely understood. We report here that MS4A1, the gene encoding B cell surface marker CD20, is significantly downregulated in human colorectal carcinoma. Furthermore, MS4A1 expression level in colorectal carcinoma is positively correlated with patient survival. Analysis of scRNA-Seq dataset from public database revealed that MS4A1 is also expressed in subsets of T cells. A CD8+CD20+ subset of T cells exists in the neighboring non-neoplastic colon but disappears in tumor in human colorectal carcinoma. Furthermore, analysis of a published nivolumab treatment dataset indicated that nivolumab-bound T cells from human patients during anti-PD-1 immunotherapy exhibit significantly higher MS4A1 expression. Our findings indicate that CD8+CD20+ T subset functions in host cancer immunosurveillance and tumor microenvironment suppresses this T subset through a PD-L1-dependent mechanism.


Asunto(s)
Neoplasias Colorrectales/genética , Glicoproteínas/genética , Adulto , Anciano , Antígenos CD20/genética , Antígenos CD20/metabolismo , Antígeno B7-H1/metabolismo , Neoplasias Colorrectales/metabolismo , Bases de Datos Factuales , Femenino , Glicoproteínas/metabolismo , Humanos , Inmunoterapia/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
3.
Cell Immunol ; 366: 104397, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34157461

RESUMEN

T lymphoma cells may constitutively express PD-1 and PD-L1. The relative role of PD-1 and PD-L1 in T lymphoma is incompletely understood. We report here that PD-1+ PDL-1+ human T lymphoma cells exhibit constitutive hyperactivation of the TCR signaling and do not respond to PD-L1-mediated suppression in vitro. Knocking out PD-1 or PD-L1 has no effects on T lymphoma cell apoptosis and proliferation in vitro, but significantly increased tumor-bearing mouse survival. Our findings determine that the constitutively active TCR signaling pathway maintain T lymphoma cell growth in vitro and that both PD-1 and PD-L1 promote T lymphoma growth in vivo.


Asunto(s)
Antígeno B7-H1/metabolismo , Linfoma de Células T/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Animales , Apoptosis , Antígeno B7-H1/genética , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias Experimentales , Receptor de Muerte Celular Programada 1/genética , Transducción de Señal , Escape del Tumor
4.
Cancer Immunol Immunother ; 69(11): 2233-2245, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32488308

RESUMEN

IL6 is an inflammatory cytokine with pleiotropic functions in both immune and nonimmune cells, and its expression level is inversely correlated with disease prognosis in patients with cancer. However, blocking IL6 alone has only yielded minimal efficacy in human cancer patients. We aimed at defining IL6 expression profiles under inflammatory conditions and cancer, and elucidating the mechanism underlying IL6 intrinsic signaling in colon carcinoma. We report here that colonic inflammation induces IL6 expression primarily in the CD11b+Ly6G+Ly6Clo polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) in colon. Although both tumor cells, T cells and myeloid cells all express IL6, PMN-MDSCs are the primary cell type that express IL6 in colon carcinoma, suggesting that IL6 up-regulation is a response to inflammation in colon epithelium and tumor microenvironment. Furthermore, we determined that IL6 activates STAT3 to up-regulate DNMT1 and DNMT3b expression in colon tumor cells, thereby revealing an epigenetic mechanism that mediates the IL6-STAT3 signaling pathway in colon carcinoma. Surprisingly, knocking out IL6 in colon tumor cells did not significantly alter tumor growth in WT mice. Conversely, IL6-sufficient colon and pancreatic tumor grow at similar rate in WT and IL6-deficient mice. However, overexpression of IL6 in colon tumor cells significantly increases tumor growth in vivo. Our findings determine that a high tumor local IL6 threshold is essential for IL6 function in colon tumor promotion and targeting the IL6-expressing PMN-MDSCs is potentially an effective approach to suppress colon tumor growth in vivo.


Asunto(s)
Adenocarcinoma/inmunología , Neoplasias Colorrectales/inmunología , Interleucina-6/inmunología , Células Supresoras de Origen Mieloide/inmunología , Microambiente Tumoral/inmunología , Adenocarcinoma/patología , Animales , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos BALB C , Células Supresoras de Origen Mieloide/metabolismo , Transducción de Señal/inmunología , Transcriptoma
5.
J Immunol ; 201(1): 264-277, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29752314

RESUMEN

Tumor cells respond to IFN-γ of activated T cells to upregulate programmed death-ligand 1 (PD-L1) in the tumor microenvironment as an adaptive immune resistance mechanism. Tumor cells also express oncogene-driven PD-L1. PD-L1 is also expressed on myeloid-derived suppressor cells (MDSCs). It is known that both type I and II IFNs upregulate PD-L1 expression in MDSCs. However, the molecular mechanism underlying PD-L1 expression in MDSCs is still largely unknown. We report in this article that MDSCs exhibit constitutive STAT1 phosphorylation in vitro without exogenous IFNs, indicating a constitutive active JAK-STAT signaling pathway in mouse MDSCs in vitro. Furthermore, IFN-α and IFN-ß but not IFN-γ are endogenously expressed in the MDSC cell line in vitro and in tumor-induced MDSCs in vivo. Neutralizing type I IFN or inhibiting the JAK-STAT signaling pathway significantly decreased constitutive PD-L1 expression in MDSCs in vitro. However, neither IFN-α expression level nor IFN-ß expression level is correlated with PD-L1 expression level in MDSCs; instead, the level of IFN receptor type I (IFNAR1) is correlated with PD-L1 expression levels in MDSCs. Consequently, knocking out IFNAR1 in mice diminished PD-L1 expression in tumor-induced MDSCs. Therefore, we determined that 1) PD-L1 expression in MDSCs is activated by type I IFN through an autocrine manner and 2) the expression level of PD-L1 is controlled at least in part by the IFNAR1 level on MDSCs. Our data indicate that MDSCs may maintain their PD-L1 expression via autocrine type I IFN to exert their suppressive activity in the absence of IFN-γ from the suppressed T cells in the tumor microenvironment.


Asunto(s)
Antígeno B7-H1/biosíntesis , Interferón-alfa/biosíntesis , Interferón beta/biosíntesis , Interferón gamma/biosíntesis , Neoplasias/genética , Receptor de Interferón alfa y beta/metabolismo , Animales , Línea Celular Tumoral , Femenino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Células Supresoras de Origen Mieloide/metabolismo , Neoplasias/inmunología , Fosforilación , Receptor de Interferón alfa y beta/genética , Factor de Transcripción STAT1/metabolismo , Microambiente Tumoral/fisiología
6.
Immunol Lett ; 268: 106887, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925442

RESUMEN

Vaccines and antibodies that specifically target or neutralize components of the SARS-CoV-2 virus are effective in prevention and treatment of human patients with SARS-CoV-2 infection. However, vaccines and SARS-CoV-2 neutralization antibodies target a subset of epitopes of viral proteins, and the fast evolution of the SARS-CoV-2 virus and the continuing emergence of SARS-CoV-2 variants confer SARS-CoV-2 immune escape from these therapies. ACE2 is the human cell receptor that serves as the entry point for SARS-CoV-2 into human cells and thus is the gatekeeper for SARS-CoV-2 infection of humans. We report here the development of 4G8C11, an anti-human ACE2 receptor monoclonal antibody that recognizes ACE2 on human cell surfaces. We determined that 4G8C11 blocks SARS-CoV-2 and variant infection of ACE2+ human cells. Furthermore, 4G8C11 has minimal effects on ACE2 receptor activity. 4G8C11 is therefore a monoclonal antibody for ACE2 receptor detection and potentially an effective immunotherapeutic agent for SARS-CoV-2 and variants.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/inmunología , SARS-CoV-2/inmunología , COVID-19/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/inmunología , Internalización del Virus/efectos de los fármacos , Células HEK293 , Animales , Chlorocebus aethiops
7.
Cells ; 12(2)2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36672246

RESUMEN

Ferroptosis has emerged as a cytotoxic T lymphocyte (CTL)-induced tumor cell death pathway. The regulation of tumor cell sensitivity to ferroptosis is incompletely understood. Here, we report that interferon regulatory factor 8 (IRF8) functions as a regulator of tumor cell intrinsic ferroptosis. Genome-wide gene expression profiling identified the ferroptosis pathway as an IRF8-regulated pathway in tumor cells. IRF8.KO tumor cells acquire resistance to intrinsic ferroptosis induction and IRF8-deficient tumor cells also exhibit decreased ferroptosis in response to tumor-specific CTLs. Irf8 deletion increased p53 expression in tumor cells and knocking out p53 in IRF8.KO tumor cells restored tumor cell sensitivity to intrinsic ferroptosis induction. Furthermore, IRF8.KO tumor cells grew significantly faster than WT tumor cells in immune-competent mice. To restore IRF8 expression in tumor cells, we designed and synthesized codon usage-optimized IRF8-encoding DNA to generate IRF8-encoding plasmid NTC9385R-mIRF8. Restoring IRF8 expression via a lipid nanoparticle-encapsulated NTC9385R-mIRF8 plasmid therapy suppressed established tumor growth in vivo. In human cancer patients, nivolumab responders have a significantly higher IRF8 expression level in their tumor cells as compared to the non-responders. Our data determine that IRF8 represses p53 expression to maintain tumor cell sensitivity to intrinsic ferroptosis.


Asunto(s)
Ferroptosis , Neoplasias , Animales , Humanos , Ratones , Ferroptosis/genética , Factores Reguladores del Interferón/metabolismo , Linfocitos T Citotóxicos/metabolismo , Proteína p53 Supresora de Tumor/genética
8.
Cancer Cell ; 41(3): 620-636.e9, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36917954

RESUMEN

The cellular and molecular mechanisms underlying tumor cell PD-L1 (tPD-L1) function in tumor immune evasion are incompletely understood. We report here that tPD-L1 does not suppress cytotoxic T lymphocyte (CTL) activity in co-cultures of tumor cells and tumor-specific CTLs and exhibits no effect on primary tumor growth. However, deleting tPD-L1 decreases lung metastasis in a CTL-dependent manner in tumor-bearing mice. Depletion of myeloid cells or knocking out PD-1 in myeloid cells (mPD-1) impairs tPD-L1 promotion of tumor lung metastasis in mice. Single-cell RNA sequencing (scRNA-seq) reveals that tPD-L1 engages mPD-1 to activate SHP2 to antagonize the type I interferon (IFN-I) and STAT1 pathway to repress Cxcl9 and impair CTL recruitment to lung metastases. Human cancer patient response to PD-1 blockade immunotherapy correlates with IFN-I response in myeloid cells. Our findings determine that tPD-L1 engages mPD-1 to activate SHP2 to suppress the IFN-I-STAT1-CXCL9 pathway to impair CTL tumor recruitment in lung metastasis.


Asunto(s)
Interferón Tipo I , Neoplasias Pulmonares , Humanos , Ratones , Animales , Linfocitos T Citotóxicos , Receptor de Muerte Celular Programada 1 , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Neoplasias Pulmonares/genética
9.
Science ; 376(6596): 996-1001, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35617401

RESUMEN

T cell quiescence is essential for maintaining a broad repertoire against a large pool of diverse antigens from microbes and tumors, but the underlying molecular mechanisms remain largely unknown. We show here that CD8α is critical for the maintenance of CD8+ T cells in a physiologically quiescent state in peripheral lymphoid organs. Upon inducible deletion of CD8α, both naïve and memory CD8+ T cells spontaneously acquired activation phenotypes and subsequently died without exposure to specific antigens. PILRα was identified as a ligand for CD8α in both mice and humans, and disruption of this interaction was able to break CD8+ T cell quiescence. Thus, peripheral T cell pool size is actively maintained by the CD8α-PILRα interaction in the absence of antigen exposure.


Asunto(s)
Antígenos CD8 , Linfocitos T CD8-positivos , Activación de Linfocitos , Glicoproteínas de Membrana , Receptores Inmunológicos , Animales , Antígenos , Antígenos CD8/genética , Antígenos CD8/metabolismo , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Eliminación de Gen , Glicoproteínas de Membrana/metabolismo , Ratones , Receptores Inmunológicos/metabolismo
10.
Cancers (Basel) ; 14(2)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35053524

RESUMEN

A hallmark of human colorectal cancer is lost expression of FAS, the death receptor for FASL of cytotoxic T lymphocytes (CTLs). However, it is unknown whether restoring FAS expression alone is sufficient to suppress csolorectal-cancer development. The FAS promoter is hypermethylated and inversely correlated with FAS mRNA level in human colorectal carcinomas. Analysis of single-cell RNA-Seq datasets revealed that FAS is highly expressed in epithelial cells and immune cells but down-regulated in colon-tumor cells in human colorectal-cancer patients. Codon usage-optimized mouse and human FAS cDNA was designed, synthesized, and encapsulated into cationic lipid to formulate nanoparticle DOTAP-Chol-mFAS and DOTAP-Chol-hFAS, respectively. Overexpression of codon usage-optimized FAS in metastatic mouse colon-tumor cells enabled FASL-induced elimination of FAS+ tumor cells in vitro, suppressed colon tumor growth, and increased the survival of tumor-bearing mice in vivo. Overexpression of codon-optimized FAS-induced FAS receptor auto-oligomerization and tumor cell auto-apoptosis in metastatic human colon-tumor cells. DOTAP-Chol-hFAS therapy is also sufficient to suppress metastatic human colon tumor xenograft growth in athymic mice. DOTAP-Chol-mFAS therapy exhibited no significant liver toxicity. Our data determined that tumor-selective delivery of FAS DNA nanoparticles is sufficient for suppression of human colon tumor growth in vivo.

11.
J Immunother Cancer ; 10(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35017152

RESUMEN

BACKGROUND: Granzyme B is a key effector of cytotoxic T lymphocytes (CTLs), and its expression level positively correlates with the response of patients with mesothelioma to immune checkpoint inhibitor immunotherapy. Whether metabolic pathways regulate Gzmb expression in CTLs is incompletely understood. METHODS: A tumor-specific CTL and tumor coculture model and a tumor-bearing mouse model were used to determine the role of glucose-6-phosphate dehydrogenase (G6PD) in CTL function and tumor immune evasion. A link between granzyme B expression and patient survival was analyzed in human patients with epithelioid mesothelioma. RESULTS: Mesothelioma cells alone are sufficient to activate tumor-specific CTLs and to enhance aerobic glycolysis to induce a PD-1hi Gzmblo CTL phenotype. However, inhibition of lactate dehydrogenase A, the key enzyme of the aerobic glycolysis pathway, has no significant effect on tumor-induced CTL activation. Tumor cells induce H3K9me3 deposition at the promoter of G6pd, the gene that encodes the rate-limiting enzyme G6PD in the pentose phosphate pathway, to downregulate G6pd expression in tumor-specific CTLs. G6PD activation increases acetyl-coenzyme A (CoA) production to increase H3K9ac deposition at the Gzmb promoter and to increase Gzmb expression in tumor-specific CTLs converting them from a Gzmblo to a Gzmbhi phenotype, thus increasing CTL tumor lytic activity. Activation of G6PD increases Gzmb+ tumor-specific CTLs and suppresses tumor growth in tumor-bearing mice. Consistent with these findings, GZMB expression level was found to correlate with increased survival in patients with epithelioid mesothelioma. CONCLUSION: G6PD is a metabolic checkpoint in tumor-activated CTLs. The H3K9me3/G6PD/acetyl-CoA/H3K9ac/Gzmb pathway is particularly important in CTL activation and immune evasion in epithelioid mesothelioma.


Asunto(s)
Glucosafosfato Deshidrogenasa/metabolismo , Granzimas/metabolismo , Evasión Inmune/inmunología , Inmunoterapia/métodos , Redes y Vías Metabólicas/inmunología , Linfocitos T Citotóxicos/inmunología , Linfocitos T/metabolismo , Escape del Tumor/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones
12.
Oncogene ; 41(18): 2651-2662, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35351997

RESUMEN

The role of glucose-6-phosphate dehydrogenase (G6PD) in human cancer is incompletely understood. In a metabolite screening, we observed that inhibition of H3K9 methylation suppressed aerobic glycolysis and enhances the PPP in human mesothelioma cells. Genome-wide screening identified G6PD as an H3K9me3 target gene whose expression is correlated with increased tumor cell apoptosis. Inhibition of aerobic glycolysis enzyme LDHA and G6PD had no significant effects on tumor cell survival. Ablation of G6PD had no significant effect on human mesothelioma and colon carcinoma xenograft growth in athymic mice. However, activation of G6PD with the G6PD-selective activator AG1 induced tumor cell death. AG1 increased tumor cell ROS production and the resultant extrinsic and intrinsic death pathways, mitochondrial processes, and unfolded protein response in tumor cells. Consistent with increased tumor cell death in vitro, AG1 suppressed human mesothelioma xenograft growth in a dose-dependent manner in vivo. Furthermore, AG1 treatment significantly increased tumor-bearing mouse survival in an intra-peritoneum xenograft athymic mouse model. Therefore, in human mesothelioma and colon carcinoma, G6PD is not essential for tumor growth. G6PD acts as a metabolic checkpoint to control metabolic flux towards the PPP to promote tumor cell apoptosis, and its expression is repressed by its promotor H3K9me3 deposition.


Asunto(s)
Carcinoma , Mesotelioma , Animales , Modelos Animales de Enfermedad , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Humanos , Mesotelioma/genética , Ratones , Ratones Desnudos , Vía de Pentosa Fosfato , Especies Reactivas de Oxígeno/metabolismo
13.
ACS Nano ; 16(8): 12695-12710, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35939651

RESUMEN

Fas ligand (FasL), expressed on the surface of activated cytotoxic T lymphocytes (CTLs), is the physiological ligand for the cell surface death receptor, Fas. The Fas-FasL engagement initiates diverse signaling pathways, including the extrinsic cell death signaling pathway, which is one of the effector mechanisms that CTLs use to kill tumor cells. Emerging clinical and experimental data indicate that Fas is essential for the efficacy of CAR-T cell immunotherapy. Furthermore, loss of Fas expression is a hallmark of human melanoma. We hypothesize that restoring Fas expression in tumor cells reverses human melanoma resistance to T cell cytotoxicity. DNA hypermethylation, at the FAS promoter, down-regulates FAS expression and confers melanoma cell resistance to FasL-induced cell death. Forced expression of Fas in tumor cells overcomes melanoma resistance to FasL-induced cell death in vitro. Lipid nanoparticle-encapsulated mouse Fas-encoding plasmid therapy eliminates Fas+ tumor cells and suppresses established melanoma growth in immune-competent syngeneic mice. Similarly, lipid nanoparticle-encapsulated human FAS-encoding plasmid (hCOFAS01) therapy significantly increases Fas protein levels on tumor cells of human melanoma patient-derived xenograft (PDX) and suppresses the established human melanoma PDX growth in humanized NSG mice. In human melanoma patients, FasL is expressed in activated and exhausted T cells, Fas mRNA level positively correlates with melanoma patient survival, and nivolumab immunotherapy increases FAS expression in tumor cells. Our data demonstrate that hCOFAS01 is an effective immunotherapeutic agent for human melanoma therapy with dual efficacy in increasing tumor cell FAS expression and in enhancing CTL tumor infiltration.


Asunto(s)
Melanoma , Receptor fas , Humanos , Ratones , Animales , Receptor fas/genética , Receptor fas/metabolismo , Citotoxicidad Inmunológica/genética , Células Tumorales Cultivadas , Proteína Ligando Fas/genética , Proteína Ligando Fas/metabolismo , Linfocitos T Citotóxicos , Melanoma/patología , Plásmidos/genética , Apoptosis
14.
Cancers (Basel) ; 13(5)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33670921

RESUMEN

Human colorectal cancers are mostly microsatellite-stable with no response to anti-PD-1 blockade immunotherapy, necessitating the development of a new immunotherapy. Osteopontin (OPN) is elevated in human colorectal cancer and may function as an immune checkpoint. We aimed at elucidating the mechanism of action of OPN and determining the efficacy of OPN blockade immunotherapy in suppression of colon cancer. We report here that OPN is primarily expressed in tumor cells, myeloid cells, and innate lymphoid cells in human colorectal carcinoma. Spp1 knock out mice exhibit a high incidence and fast growth rate of carcinogen-induced tumors. Knocking out Spp1 in colon tumor cells increased tumor-specific CTL cytotoxicity in vitro and resulted in decreased tumor growth in vivo. The OPN protein level is elevated in the peripheral blood of tumor-bearing mice. We developed four OPN neutralization monoclonal antibodies based on their efficacy in blocking OPN inhibition of T cell activation. OPN clones 100D3 and 103D6 increased the efficacy of tumor-specific CTLs in killing colon tumor cells in vitro and suppressed colon tumor growth in tumor-bearing mice in vivo. Our data indicate that OPN blockade immunotherapy with 100D3 and 103D6 has great potential to be further developed for colorectal cancer immunotherapy and for rendering a colorectal cancer response to anti-PD-1 immunotherapy.

15.
J Immunother Cancer ; 9(7)2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34326167

RESUMEN

BACKGROUND: Despite PD-L1 (Programmed death receptor ligand-1) expression on tumor cells and cytotoxic T lymphocytes tumor infiltration in the tumor microenvironment, human pancreatic cancer stands out as one of the human cancers that does not respond to immune checkpoint inhibitor (ICI) immunotherapy. Epigenome dysregulation has emerged as a major mechanism in T cell exhaustion and non-response to ICI immunotherapy, we, therefore, aimed at testing the hypothesis that an epigenetic mechanism compensates PD-L1 function to render pancreatic cancer non-response to ICI immunotherapy. METHODS: Two orthotopic pancreatic tumor mouse models were used for chromatin immunoprecipitation-Seq and RNA-Seq to identify genome-wide dysregulation of H3K4me3 and gene expression. Human pancreatic tumor and serum were analyzed for osteopontin (OPN) protein level and for correlation with patient prognosis. OPN and PD-L1 cellular location were determined in the tumors using flow cytometry. The function of WDR5-H3K4me3 axis in OPN expression were determined by Western blotting. The function of H3K4me3-OPN axis in pancreatic cancer immune escape and response to ICI immunotherapy was determined in an orthotopic pancreatic tumor mouse model. RESULTS: Mouse pancreatic tumors have a genome-wide increase in H3K4me3 deposition as compared with normal pancreas. OPN and its receptor CD44 were identified being upregulated in pancreatic tumors by their promoter H3K4me3 deposition. OPN protein is increased in both tumor cells and tumor-infiltrating immune cells in human pancreatic carcinoma and is inversely correlated with pancreatic cancer patient survival. OPN is primarily expressed in tumor cells and monocytic myeloid-derived suppressor cells (M-MDSCs), whereas PD-L1 is expressed in tumor cells, M-MDSCs, polymorphonuclear MDSCs and tumor-associated macrophages. WDR5 is essential for H3K4me3-specific histone methyltransferase activity that regulates OPN expression in tumor cells and MDSCs. Inhibition of WDR5 significantly decreased OPN protein level. Inhibition of WDR5 or knocking out of OPN suppressed orthotopic mouse pancreatic tumor growth. Inhibition of WDR5 also significantly increased efficacy of anti-PD-1 immunotherapy in suppression of mouse pancreatic tumor growth in vivo. CONCLUSIONS: OPN compensates PD-L1 function to promote pancreatic cancer immune escape. Pharmacological inhibition of the WDR5-H3K4me3 epigenetic axis is effective in suppressing pancreatic tumor immune escape and in improving efficacy of anti-PD-1 immunotherapy in pancreatic cancer.


Asunto(s)
Antígeno B7-H1/inmunología , Histonas/inmunología , Péptidos y Proteínas de Señalización Intracelular/inmunología , Osteopontina/biosíntesis , Neoplasias Pancreáticas/inmunología , Escape del Tumor/inmunología , Animales , Antígeno B7-H1/metabolismo , Modelos Animales de Enfermedad , Epigénesis Genética , Femenino , Células HEK293 , Histonas/genética , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Osteopontina/genética , Osteopontina/inmunología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
16.
Cancers (Basel) ; 12(11)2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33203146

RESUMEN

OPN is a multifunctional phosphoglycoprotein expressed in a wide range of cells, including osteoclasts, osteoblasts, neurons, epithelial cells, T, B, NK, NK T, myeloid, and innate lymphoid cells. OPN plays an important role in diverse biological processes and is implicated in multiple diseases such as cardiovascular, diabetes, kidney, proinflammatory, fibrosis, nephrolithiasis, wound healing, and cancer. In cancer patients, overexpressed OPN is often detected in the tumor microenvironment and elevated serum OPN level is correlated with poor prognosis. Initially identified in activated T cells and termed as early T cell activation gene, OPN links innate cells to adaptive cells in immune response to infection and cancer. Recent single cell RNA sequencing revealed that OPN is primarily expressed in tumor cells and tumor-infiltrating myeloid cells in human cancer patients. Emerging experimental data reveal a key role of OPN is tumor immune evasion through regulating macrophage polarization, recruitment, and inhibition of T cell activation in the tumor microenvironment. Therefore, in addition to its well-established direct tumor cell promotion function, OPN also acts as an immune checkpoint to negatively regulate T cell activation. The OPN protein level is highly elevated in peripheral blood of human cancer patients. OPN blockade immunotherapy with OPN neutralization monoclonal antibodies (mAbs) thus represents an attractive approach in human cancer immunotherapy.

17.
J Immunother Cancer ; 8(2)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33051343

RESUMEN

BACKGROUND: NF-κB is a key link between inflammation and cancer. Previous studies of NF-κB have largely focused on tumor cells, and the intrinsic function of NF-κB in T cells in tumor development and response to immunotherapy is largely unknown. We aimed at testing the hypothesis that NF-κB1 (p50) activation in T cells underlies human colon cancer immune escape and human cancer non-response to anti-PD-1 immunotherapy. METHODS: We screened NF-κB activation in human colon carcinoma and used mouse models to determine p50 function in tumor cells and immune cells. RNA-Seq was used to identify p50 target genes. p50 binding to target gene promoters were determined by electrophoresis mobility shift assay and chromatin immunoprecipitation. A p50 activation score was generated from gene expression profiling and used to link p50 activation to T-cell activation and function pre-nivolumab and post-nivolumab immunotherapy in human patients with cancer. RESULTS: p50 is the dominant form of NF-κB that is highly activated in immune cells in the human colorectal carcinoma microenvironment and neighboring non-neoplastic colon epithelial cells. Tumor cell intrinsic p50 signaling and T-cell intrinsic p50 signaling exert opposing functions in tumor growth control in vivo. Deleting Nfkb1 in tumor cells increased whereas in T cells decreased tumor growth in preclinical mouse models. Gene expression profiling identified Gzmb as a p50 target in T cells. p50 binds directly to a previously uncharacterized κB sequence at the Gzmb promoter in T cells, resulting in repression of Gzmb expression in tumor-infiltrating cytotoxic T lymphocytes (CTLs) to induce a dysfunctional CTL phenotype to promote tumor immune escape. p50 activation is inversely correlated with both GZMB expression and T-cell tumor infiltration in human colorectal carcinoma. Furthermore, nivolumab immunotherapy decreased p50 activation and increased GZMB expression in human patients with melanoma. CONCLUSIONS: Inflammation activates p50 that binds to the Gzmb promoter to repress granzyme B expression in T cells, resulting in CTL dysfunction to confer tumor immune escape and decreased response to anti-PD-1 immunotherapy.


Asunto(s)
Inmunoterapia/métodos , Linfocitos T Citotóxicos/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Escape del Tumor
18.
Cancer Lett ; 476: 87-96, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32061753

RESUMEN

Trimethylation of histone 3 lysine 9 (H3K9me3) at gene promoters is a major epigenetic mechanism that silences gene expression. We have developed a small molecule inhibitor for the H3K9me3-specific histone methyltransferase SUV39H1. We report here that FAS expression is significantly down-regulated and SUV39H1 expression is significantly up-regulated in human colorectal carcinoma (CRC) as compared to normal colon. SUV39H1-selective inhibitor F5446 decreased H3K9me3 deposition at the FAS promoter, increased Fas expression, and increased CRC cell sensitivity to FasL-induced apoptosis in vitro. Furthermore, inhibition of SUV39H1 altered the expression of genes with known functions in DNA replication and cell cycle in the metastatic colon carcinoma cells, which is associated with cell cycle arrest at S phase in the metastatic human colon carcinoma cells, resulting in tumor cell apoptosis and growth inhibition in a concentration-dependent manner in vitro. Moreover, F5446 increased 5-FU-resistant human CRC sensitivity to both 5-FU- and FasL-induced apoptosis and inhibited tumor cell growth in vitro. More importantly, F5446 suppressed human colon tumor xenograft growth in vivo. Our data indicate that pharmacological inhibition of SUV39H1 is an effective approach to suppress human CRC.


Asunto(s)
Apoptosis , Biomarcadores de Tumor/metabolismo , Puntos de Control del Ciclo Celular , Neoplasias del Colon/patología , Proteína Ligando Fas/metabolismo , Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Animales , Antimetabolitos Antineoplásicos/farmacología , Biomarcadores de Tumor/genética , Proliferación Celular , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Proteína Ligando Fas/genética , Femenino , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica , Humanos , Metiltransferasas/genética , Ratones , Ratones Desnudos , Proteínas Represoras/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Cancer Res ; 80(15): 3145-3156, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32554751

RESUMEN

Although accumulation of myeloid-derived suppressor cells (MDSC) is a hallmark of cancer, the underlying mechanism of this accumulation within the tumor microenvironment remains incompletely understood. We report here that TNFα-RIP1-mediated necroptosis regulates accumulation of MDSCs. In tumor-bearing mice, pharmacologic inhibition of DNMT with the DNA methyltransferease inhibitor decitabine (DAC) decreased MDSC accumulation and increased activation of antigen-specific cytotoxic T lymphocytes. DAC-induced decreases in MDSC accumulation correlated with increased expression of the myeloid cell lineage-specific transcription factor IRF8 in MDSCs. However, DAC also suppressed MDSC-like cell accumulation in IRF8-deficient mice, indicating that DNA methylation may regulate MDSC survival through an IRF8-independent mechanism. Instead, DAC decreased MDSC accumulation by increasing cell death via disrupting DNA methylation of RIP1-dependent targets of necroptosis. Genome-wide DNA bisulfite sequencing revealed that the Tnf promoter was hypermethylated in tumor-induced MDSCs in vivo. DAC treatment dramatically increased TNFα levels in MDSC in vitro, and neutralizing TNFα significantly increased MDSC accumulation and tumor growth in tumor-bearing mice in vivo. Recombinant TNFα induced MDSC cell death in a dose- and RIP1-dependent manner. IL6 was abundantly expressed in MDSCs in tumor-bearing mice and patients with human colorectal cancer. In vitro, IL6 treatment of MDSC-like cells activated STAT3, increased expression of DNMT1 and DNMT3b, and enhanced survival. Overall, our findings reveal that MDSCs establish a STAT3-DNMT epigenetic axis, regulated by autocrine IL6, to silence TNFα expression. This results in decreased TNFα-induced and RIP1-dependent necroptosis to sustain survival and accumulation. SIGNIFICANCE: These findings demonstrate that targeting IL6 expression or function represent potentially effective approaches to suppress MDSC survival and accumulation in the tumor microenvironment.


Asunto(s)
Comunicación Autocrina/efectos de los fármacos , Interleucina-6/farmacología , Células Supresoras de Origen Mieloide/efectos de los fármacos , Necroptosis/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Supresoras de Origen Mieloide/fisiología , Necroptosis/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , ADN Metiltransferasa 3B
20.
Mol Cancer Res ; 17(2): 420-430, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30429213

RESUMEN

Despite the remarkable efficacy of immune checkpoint inhibitor (ICI) immunotherapy in various types of human cancers, colon cancer, except for the approximately 4% microsatellite-instable (MSI) colon cancer, does not respond to ICI immunotherapy. ICI acts through activating CTLs that use the Fas-FasL pathway as one of the two effector mechanisms to suppress tumor. Cancer stem cells are often associated with resistance to therapy including immunotherapy, but the functions of Fas in colon cancer apoptosis and colon cancer stem cells are currently conflicting and highly debated. We report here that decreased Fas expression is coupled with a subset of CD133+CD24lo colon cancer cells in vitro and in vivo. Consistent of the lower Fas expression level, this subset of CD133+CD24loFaslo colon cancer cells exhibits decreased sensitivity to FasL-induced apoptosis. Furthermore, FasL selectively enriches CD133+CD24loFaslo colon cancer cells. CD133+CD24loFaslo colon cancer cells exhibit increased lung colonization potential in experimental metastatic mouse models and decreased sensitivity to tumor-specific CTL adoptive transfer and ICI immunotherapies. Interestingly, FasL challenge selectively enriched this subset of colon cancer cells in microsatellite-stable (MSS) but not in the MSI human colon cancer cell lines. Consistent with the downregulation of Fas expression in CD133+CD24lo cells, lower Fas expression level is significantly correlated with decreased survival in patients with human colon cancer. IMPLICATIONS: Our data determine that CD133+CD24loFaslo colon cancer cells are capable to evade Fas-FasL cytotoxicity of tumor-reactive CTLs and targeting this subset of colon cancer cells is potentially an effective approach to suppress colon cancer immune evasion.


Asunto(s)
Neoplasias del Colon/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Inmunoterapia/métodos , Receptor fas/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA