Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Theor Appl Genet ; 127(4): 969-80, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24504553

RESUMEN

KEY MESSAGE: Wheat lines carrying Ug99-effective stem rust resistance gene Sr43 on shortened alien chromosome segments were produced using chromosome engineering, and molecular markers linked to Sr43 were identified for marker-assisted selection. Stem rust resistance gene Sr43, transferred into common wheat (Triticum aestivum) from Thinopyrum ponticum, is an effective gene against stem rust Ug99 races. However, this gene has not been used in wheat breeding because it is located on a large Th. ponticum 7el(2) chromosome segment, which also harbors genes for undesirable traits. The objective of this study was to eliminate excessive Th. ponticum chromatin surrounding Sr43 to make it usable in wheat breeding. The two original translocation lines KS10-2 and KS24-1 carrying Sr43 were first analyzed using simple sequence repeat (SSR) markers and florescent genomic in situ hybridization. Six SSR markers located on wheat chromosome arm 7DL were identified to be associated with the Th. ponticum chromatin in KS10-2 and KS24-1. The results confirmed that KS24-1 is a 7DS·7el(2)L Robertsonian translocation as previously reported. However, KS10-2, which was previously designated as a 7el(2)S·7el(2)L-7DL translocation, was identified as a 7DS-7el(2)S·7el(2)L translocation. To reduce the Th. ponticum chromatin carrying Sr43, a BC(2)F(1) population (Chinese Spring//Chinese Spring ph1bph1b*2/KS10-2) containing ph1b-induced homoeologous recombinants was developed, tested with stem rust, and genotyped with the six SSR markers identified above. Two new wheat lines (RWG33 and RWG34) carrying Sr43 on shortened alien chromosome segments (about 17.5 and 13.7 % of the translocation chromosomes, respectively) were obtained, and two molecular markers linked to Sr43 in these lines were identified. The new wheat lines with Sr43 and the closely linked markers provide new resources for improving resistance to Ug99 and other races of stem rust in wheat.


Asunto(s)
Basidiomycota/fisiología , Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Tallos de la Planta/microbiología , Poaceae/genética , Triticum/genética , Segregación Cromosómica , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Marcadores Genéticos , Hibridación in Situ , Repeticiones de Microsatélite/genética , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Temperatura de Transición , Triticum/microbiología
2.
Theor Appl Genet ; 123(4): 603-13, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21573955

RESUMEN

The wheat (Triticum aestivum L.) stem rust (Puccinia graminis Pers.:Pers. f.sp. tritici Eriks. and Henn.) resistance gene SrWld1 conditions resistance to all North American stem rust races and is an important gene in hard red spring (HRS) wheat cultivars. A sexually recombined race having virulence to SrWld1 was isolated in the 1980s. Our objective was to determine the genetics of resistance to the race. The recombinant race was tested with the set of stem rust differentials and with a set of 36 HRS and 6 durum cultivars. Chromosomal location studies in cultivars Len, Coteau, and Stoa were completed using aneuploid analysis, molecular markers, and allelism tests. Stem rust differential tests coded the race as TPPKC, indicating it differed from TPMKC by having added virulence on Sr30 as well as SrWld1. Genes effective against TPPKC were Sr6, Sr9a, Sr9b, Sr13, Sr24, Sr31, and Sr38. Genetic studies of resistance to TPPKC indicated that Len, Coteau, and Stoa likely carried Sr9b, that Coteau and Stoa carried Sr6, and Stoa carried Sr24. Tests of HRS and durum cultivars indicated that five HRS and one durum cultivar were susceptible to TPPKC. Susceptible HRS cultivars were postulated to have SrWld1 as their major stem rust resistance gene. Divide, the susceptible durum cultivar, was postulated to lack Sr13. We concluded that although TPPKC does not constitute a threat similar to TTKSK and its variants, some cultivars would be lost from production if TPPKC became established in the field.


Asunto(s)
Basidiomycota/patogenicidad , Resistencia a la Enfermedad , Enfermedades de las Plantas/genética , Triticum/genética , Aneuploidia , Basidiomycota/crecimiento & desarrollo , Cromosomas de las Plantas , Cruzamientos Genéticos , ADN de Plantas/genética , Genes de Plantas , Marcadores Genéticos , Genotipo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta , Triticum/inmunología , Triticum/microbiología
3.
Theor Appl Genet ; 120(8): 1575-85, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20140662

RESUMEN

The durum wheat cultivar 'Golden Ball' (GB) is a source of resistance to wheat sawfly due to its superior solid stem. In the late 1980s, Dr. Leonard Joppa developed a complete set of 14 'Langdon' (LDN)-GB disomic substitution (DS) lines by using GB as the chromosome donor and LDN as the recipient. However, these substitution lines have not been previously characterized and reported in the literature. The objectives of this study were to confirm the authenticity of the substituted chromosomes and to analyze the genetic background of the 14 LDN-GB DS lines with the aid of molecular markers, and to further use the substitution lines for chromosomal localization of DNA markers and genes conferring the superior stem solidness in GB. Results from simple sequence repeat marker analysis validated the authenticity of the substituted chromosomes in 14 LDN-GB DS lines. Genome-wide scans using the target region amplification polymorphism (TRAP) marker system produced a total of 359 polymorphic fragments that were used to compare the genetic background of substitution lines with that of LDN. Among the polymorphic TRAP markers, 134 (37.3%) and 185 (51.5%) were present in LDN and GB, respectively, with only 10 (2.8%) derived from Chinese Spring. Therefore, marker analysis demonstrated that each LDN-GB DS line had a pair of chromosomes from GB with a genetic background similar to that of LDN. Of the TRAP markers generated in this study, 200 were successfully assigned to specific chromosomes based on their presence or absence in the corresponding LDN-GB DS lines. Also, evaluation of stem solidness in the substitution lines verified the presence of a major gene for stem solidness in chromosome 3B. Results from this research provides useful information for the utilization of GB and LDN-GB DS lines for genetic and genomic studies in tetraploid wheat and for the improvement of stem solidness in both durum and bread wheat.


Asunto(s)
Marcadores Genéticos , Triticum/genética , Cromosomas/ultraestructura , Cromosomas de las Plantas/ultraestructura , Etiquetas de Secuencia Expresada , Genoma de Planta , Modelos Genéticos , Polimorfismo Genético
4.
Genome ; 49(12): 1545-54, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17426769

RESUMEN

The aneuploid stocks of durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husnot) and common wheat (T. aestivum L.) have been developed mainly in 'Langdon' (LDN) and 'Chinese Spring' (CS) cultivars, respectively. The LDN-CS D-genome chromosome disomic substitution (LDN-DS) lines, where a pair of CS D-genome chromosomes substitute for a corresponding homoeologous A- or B-genome chromosome pair of LDN, have been widely used to determine the chromosomal locations of genes in tetraploid wheat. The LDN-DS lines were originally developed by crossing CS nulli-tetrasomics with LDN, followed by 6 backcrosses with LDN. They have subsequently been improved with 5 additional backcrosses with LDN. The objectives of this study were to characterize a set of the 14 most recent LDN-DS lines and to develop chromosome-specific markers, using the newly developed TRAP (target region amplification polymorphism)-marker technique. A total of 307 polymorphic DNA fragments were amplified from LDN and CS, and 302 of them were assigned to individual chromosomes. Most of the markers (95.5%) were present on a single chromosome as chromosome-specific markers, but 4.5% of the markers mapped to 2 or more chromosomes. The number of markers per chromosome varied, from a low of 10 (chromosomes 1A and 6D) to a high of 24 (chromosome 3A). There was an average of 16.6, 16.6, and 15.9 markers per chromosome assigned to the A-, B-, and D-genome chromosomes, respectively, suggesting that TRAP markers were detected at a nearly equal frequency on the 3 genomes. A comparison of the source of the expressed sequence tags (ESTs), used to derive the fixed primers, with the chromosomal location of markers revealed that 15.5% of the TRAP markers were located on the same chromosomes as the ESTs used to generate the fixed primers. A fixed primer designed from an EST mapped on a chromosome or a homoeologous group amplified at least 1 fragment specific to that chromosome or group, suggesting that the fixed primers might generate markers from target regions. TRAP-marker analysis verified the retention of at least 13 pairs of A- or B-genome chromosomes from LDN and 1 pair of D-genome chromosomes from CS in each of the LDN-DS lines. The chromosome-specific markers developed in this study provide an identity for each of the chromosomes, and they will facilitate molecular and genetic characterization of the individual chromosomes, including genetic mapping and gene identification.


Asunto(s)
Marcadores Genéticos , Genoma de Planta , Triticum/genética , Disomía Uniparental/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Cruzamientos Genéticos , Amplificación de Genes
5.
Chromosome Res ; 13(6): 559-68, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16170620

RESUMEN

Two durum wheat [Triticum turgidum L. ssp. durum (Desf.) Husn.] lines carrying the high-molecular-weight (HMW) glutenin subunits (GS) 1 D x 5 + 1Dy10 encoded by Glu-D1d, L252 and S99B34, were characterized using fluorescent genomic in-situ hybridization (FGISH) and microsatellite markers. These two durum lines were derived from the crosses in which the common wheat (T. aestivum L.) 'Len' and durum wheat 'Langdon' (LDN) and 'Renville' were involved. FGISH patterns of the mitotic chromosomes indicated that these two durum lines have one pair of 1AS.1AL-1DL translocated chromosomes in which the terminal region of 1AL was replaced by a homoeologous segment of 1DL. The 1DL segment spans approximately 31% of the long arm of the translocated chromosome. Microsatellite marker analysis confirmed the 1AS.1AL-1DL translocation and determined the translocation breakpoint to be distal to Xgwm357 on 1AL. Seed storage proteins (GS and gliadins) were analysed in these two 1AS.1AL-1DL translocation lines and three sib lines (L092, S99B19 and S99B33) using SDS-PAGE and A-PAGE. The SDS-PAGE and A-PAGE profiles demonstrated that the two low yielding lines (L252 and S99B19) had the low-molecular-weight (LMW) -1 GS encoded by Glu-A3k and Glu-B3s and 1B-encoded gliadins from LDN, and the other three lines (L092, S99B33 and S99B34) with higher yield had LMW-2 GS and 1B-encoded gliadins from Renville, suggesting that undesirable genetic components from LDN might limit substantial improvement of yield. Thus, the translocation lines with 1 D x 5 + 1Dy10 and LMW-2, which are associated with good bread-making and pasta qualities, respectively, in a good genetic background will be useful for developing durum cultivars with dual-purpose end-use. Results from this study demonstrate that the D-genome could play an important role in the genetic improvement of durum wheat and evolution of the A- and B-genomes in tetraploid wheat.


Asunto(s)
Proteínas de Plantas/genética , Translocación Genética , Triticum/genética , Marcadores Genéticos , Genoma de Planta , Hibridación Fluorescente in Situ , Cariotipificación , Repeticiones de Microsatélite/genética
6.
Chromosome Res ; 9(5): 377-86, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11448039

RESUMEN

An ethyl methanesulfonate-induced mitotic mutant of durum wheat (Triticum turgidum L. var. durum; 2n = 4x = 28) was found. We have characterized the mutant to determine the mechanism of abnormal cell division and to test for temperature effects on abnormal cell division. Stained root-tip meristems and pollen mother cells were studied with brightfield, phase contrast, and immunofluorescence microscopy. Abnormal cells included metaphase cells with a multiple of the normal complement (8x = 56, or 16x = 112), multinucleate cells, 4C, 8C, or 16C mononucleate cells, and cells exhibiting incomplete cytokinesis. The mutant had three classes of pollen mother cells: euploid with normal bivalent pairing, multiploid with bivalent pairing, and multiploid with multivalent pairing. Preprophase bands and spindles were normal in mononucleate cells. Some cells had asymmetrical phragmoplasts and phragmoplast dismantling that produced incomplete cytokinesis. Failure of cytokinesis followed by nuclear fusion were the mechanisms of abnormal cell division. To test for temperature sensitivity of the mutant, seedlings were germinated under six different temperature regimes. As germination temperature increased, the frequency of abnormal cells increased. When the mutant was crossed as the female with durum wheat, 3% of hybrids were hexaploid, indicating that functional-unreduced gametes had formed in megaspores.


Asunto(s)
Mitosis , Mutación , Triticum/genética , División Celular , Núcleo Celular/metabolismo , Cromosomas/ultraestructura , Cruzamientos Genéticos , Citoesqueleto/ultraestructura , Metanosulfonato de Etilo , Microscopía Fluorescente , Modelos Genéticos , Mutágenos , Polen/ultraestructura , Temperatura
7.
Theor Appl Genet ; 108(7): 1221-8, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-14727030

RESUMEN

The glutenin and gliadin proteins of wild emmer wheat, Triticum turgidum L. var. dicoccoides, have potential for improvement of durum wheat ( T. turgidum L. var. durum) quality. The objective of this study was to determine the chromosomes controlling the high molecular weight (HMW) glutenin subunits and gliadin proteins present in three T. turgidum var. dicoccoides accessions (Israel-A, PI-481521, and PI-478742), which were used as chromosome donors in Langdon durum- T. turgidum var. dicoccoides (LDN-DIC) chromosome substitution lines. The three T. turgidum var. dicoccoides accessions, their respective LDN-DIC substitution lines, and a number of controls with known HMW glutenin subunits were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), urea/SDS-PAGE, and acid polyacrylamide gel electrophoresis (A-PAGE). The results revealed that all three T. turgidum var. dicoccoides accessions possess Glu-A1 alleles that are the same as or similar to those reported previously. However, each T. turgidum var. dicoccoides accession had a unique Glu-B1 allele. PI-478742 had an unusual 1Bx subunit, which had mobility slightly slower than the 1Ax subunit in 12% SDS-PAGE gels. The subunits controlled by chromosome 1B of PI-481521 were slightly faster in mobility than the subunits of the Glu-B1n allele, and the 1By subunit was identified as band 8. The 1B subunits of Israel-A had similar mobility to subunits 14 and 16. The new Glu-B1 alleles were designated as Glu-B1be in Israel-A, Glu-B1bf in PI-481521, and Glu-B1bg in PI-478742. Results from A-PAGE revealed that PI-481521, PI-478742, and Israel-A had eight, 12, and nine unique gliadin bands, respectively, that were assigned to specific chromosomes. The identified glutenin subunits and gliadin proteins in the LDN-DIC substitution lines provide the basis for evaluating their effects on end-use quality, and they are also useful biochemical markers for identifying specific chromosomes or chromosome segments of T. turgidum var. dicoccoides.


Asunto(s)
Alelos , Mapeo Cromosómico , Gliadina/genética , Glútenes/análogos & derivados , Glútenes/genética , Triticum/genética , Agricultura/métodos , Electroforesis en Gel de Poliacrilamida , Marcadores Genéticos , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA