Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 622(7984): 850-862, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37794185

RESUMEN

Immune checkpoint blockade is effective for some patients with cancer, but most are refractory to current immunotherapies and new approaches are needed to overcome resistance1,2. The protein tyrosine phosphatases PTPN2 and PTPN1 are central regulators of inflammation, and their genetic deletion in either tumour cells or immune cells promotes anti-tumour immunity3-6. However, phosphatases are challenging drug targets; in particular, the active site has been considered undruggable. Here we present the discovery and characterization of ABBV-CLS-484 (AC484), a first-in-class, orally bioavailable, potent PTPN2 and PTPN1 active-site inhibitor. AC484 treatment in vitro amplifies the response to interferon and promotes the activation and function of several immune cell subsets. In mouse models of cancer resistant to PD-1 blockade, AC484 monotherapy generates potent anti-tumour immunity. We show that AC484 inflames the tumour microenvironment and promotes natural killer cell and CD8+ T cell function by enhancing JAK-STAT signalling and reducing T cell dysfunction. Inhibitors of PTPN2 and PTPN1 offer a promising new strategy for cancer immunotherapy and are currently being evaluated in patients with advanced solid tumours (ClinicalTrials.gov identifier NCT04777994 ). More broadly, our study shows that small-molecule inhibitors of key intracellular immune regulators can achieve efficacy comparable to or exceeding that of antibody-based immune checkpoint blockade in preclinical models. Finally, to our knowledge, AC484 represents the first active-site phosphatase inhibitor to enter clinical evaluation for cancer immunotherapy and may pave the way for additional therapeutics that target this important class of enzymes.


Asunto(s)
Inmunoterapia , Neoplasias , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Proteína Tirosina Fosfatasa no Receptora Tipo 2 , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia/métodos , Interferones/inmunología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 2/antagonistas & inhibidores , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
2.
Nat Chem Biol ; 13(4): 389-395, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28135237

RESUMEN

Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed in vitro and in vivo are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein-protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.


Asunto(s)
Antineoplásicos/farmacología , Indanos/farmacología , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Sulfonamidas/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Indanos/química , Modelos Moleculares , Estructura Molecular , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/metabolismo , Unión Proteica/efectos de los fármacos , Relación Estructura-Actividad , Sulfonamidas/química , Células Tumorales Cultivadas
3.
PLoS Pathog ; 11(9): e1005162, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26367394

RESUMEN

The ability of pathogens to cause disease depends on their aptitude to escape the immune system. Type IV pili are extracellular filamentous virulence factors composed of pilin monomers and frequently expressed by bacterial pathogens. As such they are major targets for the host immune system. In the human pathogen Neisseria meningitidis, strains expressing class I pilins contain a genetic recombination system that promotes variation of the pilin sequence and is thought to aid immune escape. However, numerous hypervirulent clinical isolates express class II pilins that lack this property. This raises the question of how they evade immunity targeting type IV pili. As glycosylation is a possible source of antigenic variation it was investigated using top-down mass spectrometry to provide the highest molecular precision on the modified proteins. Unlike class I pilins that carry a single glycan, we found that class II pilins display up to 5 glycosylation sites per monomer on the pilus surface. Swapping of pilin class and genetic background shows that the pilin primary structure determines multisite glycosylation while the genetic background determines the nature of the glycans. Absence of glycosylation in class II pilins affects pilus biogenesis or enhances pilus-dependent aggregation in a strain specific fashion highlighting the extensive functional impact of multisite glycosylation. Finally, molecular modeling shows that glycans cover the surface of class II pilins and strongly decrease antibody access to the polypeptide chain. This strongly supports a model where strains expressing class II pilins evade the immune system by changing their sugar structure rather than pilin primary structure. Overall these results show that sequence invariable class II pilins are cloaked in glycans with extensive functional and immunological consequences.


Asunto(s)
Endotelio Vascular/microbiología , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Evasión Inmune , Modelos Moleculares , Neisseria meningitidis/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Adhesión Bacteriana , Línea Celular , Células Cultivadas , Secuencia Conservada , Endotelio Vascular/citología , Endotelio Vascular/inmunología , Endotelio Vascular/patología , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Fimbrias Bacterianas/inmunología , Fimbrias Bacterianas/ultraestructura , Eliminación de Gen , Glicosilación , Interacciones Huésped-Patógeno , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Endoteliales de la Vena Umbilical Humana/microbiología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Infecciones Meningocócicas/inmunología , Infecciones Meningocócicas/metabolismo , Infecciones Meningocócicas/microbiología , Infecciones Meningocócicas/patología , Microscopía Electrónica de Transmisión , Neisseria meningitidis/inmunología , Neisseria meningitidis/ultraestructura , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Propiedades de Superficie
5.
Commun Chem ; 7(1): 183, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152201

RESUMEN

PTPN2 (protein tyrosine phosphatase non-receptor type 2, or TC-PTP) and PTPN1 are attractive immuno-oncology targets, with the deletion of Ptpn1 and Ptpn2 improving response to immunotherapy in disease models. Targeted protein degradation has emerged as a promising approach to drug challenging targets including phosphatases. We developed potent PTPN2/N1 dual heterobifunctional degraders (Cmpd-1 and Cmpd-2) which facilitate efficient complex assembly with E3 ubiquitin ligase CRL4CRBN, and mediate potent PTPN2/N1 degradation in cells and mice. To provide mechanistic insights into the cooperative complex formation introduced by degraders, we employed a combination of structural approaches. Our crystal structure reveals how PTPN2 is recognized by the tri-substituted thiophene moiety of the degrader. We further determined a high-resolution structure of DDB1-CRBN/Cmpd-1/PTPN2 using single-particle cryo-electron microscopy (cryo-EM). This structure reveals that the degrader induces proximity between CRBN and PTPN2, albeit the large conformational heterogeneity of this ternary complex. The molecular dynamic (MD)-simulations constructed based on the cryo-EM structure exhibited a large rigid body movement of PTPN2 and illustrated the dynamic interactions between PTPN2 and CRBN. Together, our study demonstrates the development of PTPN2/N1 heterobifunctional degraders with potential applications in cancer immunotherapy. Furthermore, the developed structural workflow could help to understand the dynamic nature of degrader-induced cooperative ternary complexes.

6.
ACS Chem Biol ; 17(3): 556-566, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35188729

RESUMEN

Hematopoietic progenitor kinase 1 (HPK1) is an MAP4K family member within the Ste20-like serine/threonine branch of the kinome. HPK1 expression is limited to hematopoietic cells and has a predominant role as a negative regulator of T cell function. Because of the central/dominant role in negatively regulating T cell function, HPK1 has long been in the center of interest as a potential pharmacological target for immune therapy. The development of a small molecule HPK1 inhibitor remains challenging because of the need for high specificity relative to other kinases, including additional MAP4K family members, that are required for efficient immune cell activation. Here, we report the identification of the selective and potent HPK1 chemical probe, A-745. In unbiased cellular kinase-binding assays, A-745 demonstrates an excellent cellular selectivity binding profile within pharmacologically relevant concentrations. This HPK1 selectivity translates to an in vitro immune cell activation phenotype reminiscent of Hpk1-deficient and Hpk1-kinase-dead T cells, including augmented proliferation and cytokine production. The results from this work give a path forward for further developmental efforts to generate additional selective and potent small molecule HPK1 inhibitors with the pharmacological properties for immunotherapy.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Linfocitos T , Factores Inmunológicos , Inmunoterapia , Transducción de Señal
7.
Virol J ; 6: 177, 2009 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-19860914

RESUMEN

BACKGROUND: Porcine reproductive and respiratory syndrome virus (PRRSV) causes a prolonged, economically devastating infection in pigs, and immune resistance to infection appears variable. Since the porcine adaptive immune system is not fully competent at birth, we hypothesized that age influences the dynamics of PRRSV infection. Thus, young piglets, growing 16-20-week-old finisher pigs, and mature third parity sows were infected with virulent or attenuated PRRSV, and the dynamics of viral infection, disease, and immune response were monitored over time. RESULTS: Virulent PRRSV infection and disease were markedly more severe and prolonged in young piglets than in finishers or sows. Attenuated PRRSV in piglets also produced a prolonged viremia that was delayed and reduced in magnitude, and in finishers and sows, about half the animals showed no viremia. Despite marked differences in infection, antibody responses were observed in all animals irrespective of age, with older pigs tending to seroconvert sooner and achieve higher antibody levels than 3-week-old animals. Interferon gamma (IFN gamma) secreting peripheral blood mononuclear cells were more abundant in sows but not specifically increased by PRRSV infection in any age group, and interleukin-10 (IL-10) levels in blood were not correlated with PRRSV infection status. CONCLUSION: These findings show that animal age, perhaps due to increased innate immune resistance, strongly influences the outcome of acute PRRSV infection, whereas an antibody response is triggered at a low threshold of infection that is independent of age. Prolonged infection was not due to IL-10-mediated immunosuppression, and PRRSV did not elicit a specific IFN gamma response, especially in non-adult animals. Equivalent antibody responses were elicited in response to virulent and attenuated viruses, indicating that the antigenic mass necessary for an immune response is produced at a low level of infection, and is not predicted by viremic status. Thus, viral replication was occurring in lung or lymphoid tissues even though viremia was not always observed.


Asunto(s)
Envejecimiento/inmunología , Inmunidad Innata , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/patología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Animales , Anticuerpos Antivirales/sangre , Femenino , Interferón gamma/metabolismo , Interleucina-10/sangre , Leucocitos Mononucleares/inmunología , Pulmón/virología , Tejido Linfoide/virología , Masculino , Índice de Severidad de la Enfermedad , Porcinos , Carga Viral , Viremia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA