Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur Biophys J ; 46(7): 665-674, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28825121

RESUMEN

Asparagine is conserved in the S6 transmembrane segments of all voltage-gated sodium, calcium, and TRP channels identified to date. A broad spectrum of channelopathies including cardiac arrhythmias, epilepsy, muscle diseases, and pain disorders is associated with its mutation. To investigate its effects on sodium channel functional properties, we mutated the simple prokaryotic sodium channel NaChBac. Electrophysiological characterization of the N225D mutant reveals that this conservative substitution shifts the voltage-dependence of inactivation by 25 mV to more hyperpolarized potentials. The mutant also displays greater thermostability, as determined by synchrotron radiation circular dichroism spectroscopy studies of purified channels. Based on our analyses of high-resolution structures of NaChBac homologues, we suggest that the side-chain amine group of asparagine 225 forms one or more hydrogen bonds with different channel elements and that these interactions are important for normal channel function. The N225D mutation eliminates these hydrogen bonds and the structural consequences involve an enhanced channel inactivation.


Asunto(s)
Asparagina , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencia Conservada , Mutagénesis Sitio-Dirigida , Canales de Sodio/química , Canales de Sodio/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Células HEK293 , Humanos , Modelos Moleculares , Conformación Proteica , Estabilidad Proteica , Canales de Sodio/genética , Temperatura
2.
J Biol Chem ; 289(4): 1971-80, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24311784

RESUMEN

Inherited erythromelalgia (IEM) causes debilitating episodic neuropathic pain characterized by burning in the extremities. Inherited "paroxysmal extreme pain disorder" (PEPD) differs in its clinical picture and affects proximal body areas like the rectal, ocular, or jaw regions. Both pain syndromes have been linked to mutations in the voltage-gated sodium channel Nav1.7. Electrophysiological characterization shows that IEM-causing mutations generally enhance activation, whereas mutations leading to PEPD alter fast inactivation. Previously, an A1632E mutation of a patient with overlapping symptoms of IEM and PEPD was reported (Estacion, M., Dib-Hajj, S. D., Benke, P. J., Te Morsche, R. H., Eastman, E. M., Macala, L. J., Drenth, J. P., and Waxman, S. G. (2008) NaV1.7 Gain-of-function mutations as a continuum. A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders. J. Neurosci. 28, 11079-11088), displaying a shift of both activation and fast inactivation. Here, we characterize a new mutation of Nav1.7, A1632T, found in a patient suffering from IEM. Although transfection of A1632T in sensory neurons resulted in hyperexcitability and spontaneous firing of dorsal root ganglia (DRG) neurons, whole-cell patch clamp of transfected HEK cells revealed that Nav1.7 activation was unaltered by the A1632T mutation but that steady-state fast inactivation was shifted to more depolarized potentials. This is a characteristic normally attributed to PEPD-causing mutations. In contrast to the IEM/PEPD crossover mutation A1632E, A1632T failed to slow current decay (i.e. open-state inactivation) and did not increase resurgent currents, which have been suggested to contribute to high-frequency firing in physiological and pathological conditions. Reduced fast inactivation without increased resurgent currents induces symptoms of IEM, not PEPD, in the new Nav1.7 mutation, A1632T. Therefore, persistent and resurgent currents are likely to determine whether a mutation in Nav1.7 leads to IEM or PEPD.


Asunto(s)
Sustitución de Aminoácidos , Eritromelalgia/metabolismo , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Dolor/metabolismo , Recto/anomalías , Eritromelalgia/genética , Eritromelalgia/patología , Femenino , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Células HEK293 , Humanos , Transporte Iónico/genética , Masculino , Canal de Sodio Activado por Voltaje NAV1.7/genética , Dolor/genética , Dolor/patología , Recto/metabolismo , Recto/patología , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología
3.
J Biol Chem ; 288(28): 20280-92, 2013 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23709225

RESUMEN

The surveillance of acid-base homeostasis is concerted by diverse mechanisms, including an activation of sensory afferents. Proton-evoked activation of rodent sensory neurons is mainly mediated by the capsaicin receptor TRPV1 and acid-sensing ion channels. In this study, we demonstrate that extracellular acidosis activates and sensitizes the human irritant receptor TRPA1 (hTRPA1). Proton-evoked membrane currents and calcium influx through hTRPA1 occurred at physiological acidic pH values, were concentration-dependent, and were blocked by the selective TRPA1 antagonist HC030031. Both rodent and rhesus monkey TRPA1 failed to respond to extracellular acidosis, and protons even inhibited rodent TRPA1. Accordingly, mouse dorsal root ganglion neurons lacking TRPV1 only responded to protons when hTRPA1 was expressed heterologously. This species-specific activation of hTRPA1 by protons was reversed in both mouse and rhesus monkey TRPA1 by exchange of distinct residues within transmembrane domains 5 and 6. Furthermore, protons seem to interact with an extracellular interaction site to gate TRPA1 and not via a modification of intracellular N-terminal cysteines known as important interaction sites for electrophilic TRPA1 agonists. Our data suggest that hTRPA1 acts as a sensor for extracellular acidosis in human sensory neurons and should thus be taken into account as a yet unrecognized transduction molecule for proton-evoked pain and inflammation. The species specificity of this property is unique among known endogenous TRPA1 agonists, possibly indicating that evolutionary pressure enforced TRPA1 to inherit the role as an acid sensor in human sensory neurons.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Protones , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Sitios de Unión/genética , Calcio/metabolismo , Canales de Calcio/genética , Capsaicina/farmacología , Células Cultivadas , Cimenos , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Ionomicina/farmacología , Macaca mulatta , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monoterpenos/farmacología , Mutación , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Potasio/farmacología , Ratas , Especificidad de la Especie , Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio/genética
4.
Mol Pain ; 8: 69, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22978421

RESUMEN

BACKGROUND: Gain-of-function mutations of the nociceptive voltage-gated sodium channel Nav1.7 lead to inherited pain syndromes, such as paroxysmal extreme pain disorder (PEPD). One characteristic of these mutations is slowed fast-inactivation kinetics, which may give rise to resurgent sodium currents. It is long known that toxins from Anemonia sulcata, such as ATX-II, slow fast inactivation and skin contact for example during diving leads to various symptoms such as pain and itch. Here, we investigated if ATX-II induces resurgent currents in sensory neurons of the dorsal root ganglion (DRGs) and how this may translate into human sensations. RESULTS: In large A-fiber related DRGs ATX-II (5 nM) enhances persistent and resurgent sodium currents, but failed to do so in small C-fiber linked DRGs when investigated using the whole-cell patch-clamp technique. Resurgent currents are thought to depend on the presence of the sodium channel ß4-subunit. Using RT-qPCR experiments, we show that small DRGs express significantly less ß4 mRNA than large sensory neurons. With the ß4-C-terminus peptide in the pipette solution, it was possible to evoke resurgent currents in small DRGs and in Nav1.7 or Nav1.6 expressing HEK293/N1E115 cells, which were enhanced by the presence of extracellular ATX-II. When injected into the skin of healthy volunteers, ATX-II induces painful and itch-like sensations which were abolished by mechanical nerve block. Increase in superficial blood flow of the skin, measured by Laser doppler imaging is limited to the injection site, so no axon reflex erythema as a correlate for C-fiber activation was detected. CONCLUSION: ATX-II enhances persistent and resurgent sodium currents in large diameter DRGs, whereas small DRGs depend on the addition of ß4-peptide to the pipette recording solution for ATX-II to affect resurgent currents. Mechanical A-fiber blockade abolishes all ATX-II effects in human skin (e.g. painful and itch-like paraesthesias), suggesting that it mediates its effects mainly via activation of A-fibers.


Asunto(s)
Venenos de Cnidarios/toxicidad , Activación del Canal Iónico/efectos de los fármacos , Fibras Nerviosas Mielínicas/patología , Dolor/patología , Células Receptoras Sensoriales/metabolismo , Canales de Sodio/metabolismo , Animales , Venenos de Cnidarios/administración & dosificación , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/metabolismo , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/patología , Ganglios Espinales/fisiopatología , Células HEK293 , Humanos , Inyecciones Intradérmicas , Masculino , Ratones , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Fibras Nerviosas Mielínicas/efectos de los fármacos , Fibras Nerviosas Mielínicas/metabolismo , Dolor/fisiopatología , Péptidos/toxicidad , Prurito/patología , Prurito/fisiopatología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/patología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA