Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
1.
Annu Rev Biochem ; 88: 1-24, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31220975

RESUMEN

This first serious attempt at an autobiographical accounting has forced me to sit still long enough to compile my thoughts about a long personal and scientific journey. I especially hope that my trajectory will be of interest and perhaps beneficial to much younger women who are just getting started in their careers. To paraphrase from Virginia Woolf's writings in A Room of One's Own at the beginning of the 20th century, "for most of history Anonymous was a Woman." However, Ms. Woolf is also quoted as saying "nothing has really happened until it has been described," a harbinger of the enormous historical changes that were about to be enacted and recorded by women in the sciences and other disciplines. The progress in my chosen field of study-the chemical basis of enzyme action-has also been remarkable, from the first description of an enzyme's 3D structure to a growing and deep understanding of the origins of enzyme catalysis.


Asunto(s)
Coenzimas/química , Enzimas/química , Mujeres Trabajadoras/historia , Biocatálisis , Selección de Profesión , Coenzimas/metabolismo , Pruebas de Enzimas , Enzimas/metabolismo , Femenino , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Cinética , Teoría Cuántica
2.
Annu Rev Biochem ; 82: 471-96, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23746260

RESUMEN

The relationship between protein dynamics and function is a subject of considerable contemporary interest. Although protein motions are frequently observed during ligand binding and release steps, the contribution of protein motions to the catalysis of bond making/breaking processes is more difficult to probe and verify. Here, we show how the quantum mechanical hydrogen tunneling associated with enzymatic C-H bond cleavage provides a unique window into the necessity of protein dynamics for achieving optimal catalysis. Experimental findings support a hierarchy of thermodynamically equilibrated motions that control the H-donor and -acceptor distance and active-site electrostatics, creating an ensemble of conformations suitable for H-tunneling. A possible extension of this view to methyl transfer and other catalyzed reactions is also presented. The impact of understanding these dynamics on the conceptual framework for enzyme activity, inhibitor/drug design, and biomimetic catalyst design is likely to be substantial.


Asunto(s)
Enzimas/fisiología , Hidrógeno/química , Proteínas/fisiología , Termodinámica , Catálisis , Enzimas/química , Hidrógeno/metabolismo , Hidrógeno/fisiología , Cinética , Modelos Moleculares , Conformación Proteica , Proteínas/química
3.
Proc Natl Acad Sci U S A ; 120(10): e2211630120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36867685

RESUMEN

The enzyme soybean lipoxygenase (SLO) provides a prototype for deep tunneling mechanisms in hydrogen transfer catalysis. This work combines room temperature X-ray studies with extended hydrogen-deuterium exchange experiments to define a catalytically-linked, radiating cone of aliphatic side chains that connects an active site iron center of SLO to the protein-solvent interface. Employing eight variants of SLO that have been appended with a fluorescent probe at the identified surface loop, nanosecond fluorescence Stokes shifts have been measured. We report a remarkable identity of the energies of activation (Ea) for the Stokes shifts decay rates and the millisecond C-H bond cleavage step that is restricted to side chain mutants within an identified thermal network. These findings implicate a direct coupling of distal protein motions surrounding the exposed fluorescent probe to active site motions controlling catalysis. While the role of dynamics in enzyme function has been predominantly attributed to a distributed protein conformational landscape, the presented data implicate a thermally initiated, cooperative protein reorganization that occurs on a timescale faster than nanosecond and represents the enthalpic barrier to the reaction of SLO.


Asunto(s)
Glycine max , Lipooxigenasa , Colorantes Fluorescentes , Movimiento (Física) , Hidrógeno
4.
J Biol Chem ; 298(9): 102350, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35933011

RESUMEN

The analysis of hydrogen deuterium exchange by mass spectrometry as a function of temperature and mutation has emerged as a generic and efficient tool for the spatial resolution of protein networks that are proposed to function in the thermal activation of catalysis. In this work, we extend temperature-dependent hydrogen deuterium exchange from apo-enzyme structures to protein-ligand complexes. Using adenosine deaminase as a prototype, we compared the impacts of a substrate analog (1-deaza-adenosine) and a very tight-binding inhibitor/transition state analog (pentostatin) at single and multiple temperatures. At a single temperature, we observed different hydrogen deuterium exchange-mass spectrometry properties for the two ligands, as expected from their 106-fold differences in strength of binding. By contrast, analogous patterns for temperature-dependent hydrogen deuterium exchange mass spectrometry emerge in the presence of both 1-deaza-adenosine and pentostatin, indicating similar impacts of either ligand on the enthalpic barriers for local protein unfolding. We extended temperature-dependent hydrogen deuterium exchange to a function-altering mutant of adenosine deaminase in the presence of pentostatin and revealed a protein thermal network that is highly similar to that previously reported for the apo-enzyme (Gao et al., 2020, JACS 142, 19936-19949). Finally, we discuss the differential impacts of pentostatin binding on overall protein flexibility versus site-specific thermal transfer pathways in the context of models for substrate-induced changes to a distributed protein conformational landscape that act in synergy with embedded protein thermal networks to achieve efficient catalysis.


Asunto(s)
Adenosina Desaminasa , Deuterio , Adenosina/química , Adenosina Desaminasa/química , Deuterio/química , Medición de Intercambio de Deuterio , Ligandos , Pentostatina/química , Conformación Proteica , Proteínas , Temperatura
5.
Proc Natl Acad Sci U S A ; 117(20): 10797-10805, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32371482

RESUMEN

Human catechol O-methyltransferase (COMT) has emerged as a model for understanding enzyme-catalyzed methyl transfer from S-adenosylmethionine (AdoMet) to small-molecule catecholate acceptors. Mutation of a single residue (tyrosine 68) behind the methyl-bearing sulfonium of AdoMet was previously shown to impair COMT activity by interfering with methyl donor-acceptor compaction within the activated ground state of the wild type enzyme [J. Zhang, H. J. Kulik, T. J. Martinez, J. P. Klinman, Proc. Natl. Acad. Sci. U.S.A. 112, 7954-7959 (2015)]. This predicts the involvement of spatially defined protein dynamical effects that further tune the donor/acceptor distance and geometry as well as the electrostatics of the reactants. Here, we present a hydrogen/deuterium exchange (HDX)-mass spectrometric study of wild type and mutant COMT, comparing temperature dependences of HDX against corresponding kinetic and cofactor binding parameters. The data show that the impaired Tyr68Ala mutant displays similar breaks in Arrhenius plots of both kinetic and HDX properties that are absent in the wild type enzyme. The spatial resolution of HDX below a break point of 15-20 °C indicates changes in flexibility across ∼40% of the protein structure that is confined primarily to the periphery of the AdoMet binding site. Above 20 °C, Tyr68Ala behaves more like WT in HDX, but its rate and enthalpic barrier remain significantly altered. The impairment of catalysis by Tyr68Ala can be understood in the context of a mutationally induced alteration in protein motions that becomes manifest along and perpendicular to the primary group transfer coordinate.


Asunto(s)
Catecol O-Metiltransferasa/química , Secuencias de Aminoácidos , Dominio Catalítico , Catecol O-Metiltransferasa/genética , Catecol O-Metiltransferasa/metabolismo , Humanos , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Simulación de Dinámica Molecular , Mutación
6.
Nat Methods ; 16(7): 595-602, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31249422

RESUMEN

Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful biophysical technique being increasingly applied to a wide variety of problems. As the HDX-MS community continues to grow, adoption of best practices in data collection, analysis, presentation and interpretation will greatly enhance the accessibility of this technique to nonspecialists. Here we provide recommendations arising from community discussions emerging out of the first International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX; 2017). It is meant to represent both a consensus viewpoint and an opportunity to stimulate further additions and refinements as the field advances.


Asunto(s)
Medición de Intercambio de Deuterio/métodos , Espectrometría de Masas/métodos , Análisis de Datos , Concentración de Iones de Hidrógeno
7.
J Am Chem Soc ; 143(2): 785-797, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33395523

RESUMEN

We report here on the salient role of protein mobility in accessing conformational landscapes that enable efficient enzyme catalysis. We are focused on yeast enolase, a highly conserved lyase with a TIM barrel domain and catalytic loop, as part of a larger study of the relationship of site selective protein motions to chemical reactivity within superfamilies. Enthalpically hindered variants were developed by replacement of a conserved hydrophobic side chain (Leu 343) with smaller side chains. Leu343 is proximal to the active site base in enolase, and comparative pH rate profiles for the valine and alanine variants indicate a role for side chain hydrophobicity in tuning the pKa of the catalytic base. However, the magnitude of a substrate deuterium isotope effect is almost identical for wild-type (WT) and Leu343Ala, supporting an unchanged rate-determining proton abstraction step. The introduced hydrophobic side chains at position 343 lead to a discontinuous break in both activity and activation energy as a function of side chain volume. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments were performed as a function of time and temperature for WT and Leu343Ala, and provide a spatially resolved map of changes in protein flexibility following mutation. Impacts on protein flexibility are localized to specific networks that arise at the protein-solvent interface and terminate in a loop that has been shown by X-ray crystallography to close over the active site. These interrelated effects are discussed in the context of long-range, solvent-accessible and thermally activated networks that play key roles in tuning the precise distances and interactions among reactants.


Asunto(s)
Liasas/metabolismo , Temperatura , Agua/metabolismo , Sitios de Unión , Biocatálisis , Cinética , Liasas/química , Liasas/genética , Modelos Moleculares , Mutación , Saccharomyces cerevisiae/enzimología , Agua/química
8.
Biochemistry ; 59(7): 901-910, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32022556

RESUMEN

Hydrogen tunneling in enzymatic C-H activation requires a dynamical sampling among ground-state enzyme-substrate (E-S) conformations, which transiently generates a tunneling-ready state (TRS). The TRS is characterized by a hydrogen donor-acceptor distance (DAD) of 2.7 Å, ∼0.5 Å shorter than the dominant DAD of optimized ground states. Recently, a high-resolution, 13C electron-nuclear double-resonance (ENDOR) approach was developed to characterize the ground-state structure of the complex of the linoleic acid (LA) substrate with soybean lipoxygenase (SLO). The resulting enzyme-substrate model revealed two ground-state conformers with different distances between the target C11 of LA and the catalytically active cofactor [Fe(III)-OH]: the active conformer "a", with a van der Waals DAD of 3.1 Å between C11 and metal-bound hydroxide, and an inactive conformer "b", with a distance that is almost 1 Å longer. Herein, the structure of the E-S complex is examined for a series of six variants in which subtle structural modifications of SLO have been introduced either at a hydrophobic side chain near the bound substrate or at a remote residue within a protein network whose flexibility influences hydrogen transfer. A remarkable correlation is found between the ENDOR-derived population of the active ground-state conformer a and the kinetically derived differential enthalpic barrier for D versus H transfer, ΔEa, with the latter increasing as the fraction of conformer a decreases. As proposed, ΔEa provides a "ruler" for the DAD within the TRS. ENDOR measurements further corroborate the previous identification of a dynamical network coupling the buried active site of SLO to the surface. This study shows that subtle imperfections within the initial ground-state structures of E-S complexes are accompanied by compromised geometries at the TRS.


Asunto(s)
Glycine max/enzimología , Ácido Linoleico/química , Lipooxigenasa/química , Isótopos de Carbono/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Hidrógeno/química , Lipooxigenasa/genética , Mutación , Conformación Proteica
9.
J Biol Chem ; 294(48): 18069-18076, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31624150

RESUMEN

Lipoxygenases are widespread enzymes found in virtually all eukaryotes, including fungi, and, more recently, in prokaryotes. These enzymes act on long-chain polyunsaturated fatty acid substrates (C18 to C20), raising questions regarding how the substrate threads its way from solvent to the active site. Herein, we report a comparison of the temperature dependence of isotope effects on first- and second-order rate constants among single-site variants of the prototypic plant enzyme soybean lipoxygenase-1 substituted at amino acid residues inferred to impact substrate binding. We created 10 protein variants including four amino acid positions, Val-750, Ile-552, Ile-839, and Trp-500, located within a previously proposed substrate portal. The conversion of these bulky hydrophobic side chains to smaller side chains is concluded to increase the mobility of flanking helices, giving rise to increased off rates for substrate dissociation from the enzyme. In this manner, we identified a specific "binding network" that can regulate movement of the substrate from the solvent to the active site. Taken together with our previous findings on C-H and O2 activation of soybean lipoxygenase-1, these results support the emergence of multiple complementary networks within a single protein scaffold that modulate different steps along the enzymatic reaction coordinate.


Asunto(s)
Glycine max/enzimología , Lipooxigenasa/química , Proteínas de Soja/química , Sustitución de Aminoácidos , Dominio Catalítico , Lipooxigenasa/genética , Mutación Missense , Proteínas de Soja/genética , Glycine max/genética
10.
J Biol Chem ; 294(41): 15025-15036, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31427437

RESUMEN

Pyrroloquinoline quinone is a prominent redox cofactor in many prokaryotes, produced from a ribosomally synthesized and post-translationally modified peptide PqqA via a pathway comprising four conserved proteins PqqB-E. These four proteins are now fairly well-characterized and span radical SAM activity (PqqE), aided by a peptide chaperone (PqqD), a dual hydroxylase (PqqB), and an eight-electron, eight-proton oxidase (PqqC). A full description of this pathway has been hampered by a lack of information regarding a protease/peptidase required for the excision of an early, cross-linked di-amino acid precursor to pyrroloquinoline quinone. Herein, we isolated and characterized a two-component heterodimer protein from the α-proteobacterium Methylobacterium (Methylorubrum) extorquens that can rapidly catalyze cleavage of PqqA into smaller peptides. Using pulldown assays, surface plasmon resonance, and isothermal calorimetry, we demonstrated the formation of a complex PqqF/PqqG, with a KD of 300 nm We created a molecular model of the heterodimer by comparison with the Sphingomonas sp. A1 M16B Sph2681/Sph2682 protease. Analysis of time-dependent patterns for the appearance of proteolysis products indicates high specificity of PqqF/PqqG for serine side chains. We hypothesize that PqqF/PqqG initially cleaves between the PqqE/PqqD-generated cross-linked form of PqqA, with nonspecific cellular proteases completing the release of a suitable substrate for the downstream enzyme PqqB. The finding of a protease that specifically targets serine side chains is rare, and we propose that this activity may be useful in proteomic analyses of the large family of proteins that have undergone post-translational phosphorylation at serine.


Asunto(s)
Alphaproteobacteria/enzimología , Coenzimas/metabolismo , Cofactor PQQ/metabolismo , Péptido Hidrolasas/metabolismo , Secuencia de Aminoácidos , Modelos Moleculares , Oxidación-Reducción , Péptido Hidrolasas/química , Unión Proteica , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Estructura Cuaternaria de Proteína
11.
J Am Chem Soc ; 142(47): 19936-19949, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33181018

RESUMEN

Proteins are intrinsically flexible macromolecules that undergo internal motions with time scales spanning femtoseconds to milliseconds. These fluctuations are implicated in the optimization of reaction barriers for enzyme catalyzed reactions. Time, temperature, and mutation dependent hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) has been previously employed to identify spatially resolved, catalysis-linked dynamical regions of enzymes. We now extend this technique to pursue the correlation of protein flexibility and chemical reactivity within the diverse and widespread TIM barrel proteins, targeting murine adenosine deaminase (mADA) that catalyzes the irreversible deamination of adenosine to inosine and ammonia. Following a structure-function analysis of rate and activation energy for a series of mutations at a second sphere phenylalanine positioned in proximity to the bound substrate, the catalytically impaired Phe61Ala with an elevated activation energy (Ea = 7.5 kcal/mol) and the wild type (WT) mADA (Ea = 5.0 kcal/mol) were selected for HDX-MS experiments. The rate constants and activation energies of HDX for peptide segments are quantified and used to assess mutation-dependent changes in local and distal motions. Analyses reveal that approximately 50% of the protein sequence of Phe61Ala displays significant changes in the temperature dependence of HDX behaviors, with the dominant change being an increase in protein flexibility. Utilizing Phe61Ile, which displays the same activation energy for kcat as WT, as a control, we were able to further refine the HDX analysis, highlighting the regions of mADA that are altered in a functionally relevant manner. A map is constructed that illustrates the regions of protein that are proposed to be essential for the thermal optimization of active site configurations that dominate reaction barrier crossings in the native enzyme.


Asunto(s)
Adenosina Desaminasa/metabolismo , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Adenosina/metabolismo , Adenosina Desaminasa/química , Adenosina Desaminasa/genética , Animales , Sitios de Unión , Biocatálisis , Desaminación , Cinética , Ratones , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Especificidad por Sustrato , Temperatura
12.
J Am Chem Soc ; 142(29): 12620-12634, 2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32643933

RESUMEN

Understanding the relationship between the metallocofactor and its protein environment is the key to uncovering the mechanism of metalloenzymes. PqqE, a radical S-adenosylmethionine enzyme in pyrroloquinoline quinone (PQQ) biosynthesis, contains three iron-sulfur cluster binding sites. Two auxiliary iron-sulfur cluster binding sites, designated as AuxI and AuxII, use distinctive ligands compared to other proteins in the family while their functions remain unclear. Here, we investigate the electronic properties of these iron-sulfur clusters and compare the catalytic efficiency of wild-type (WT) Methylorubrum extorquens AM1 PqqE to a range of mutated constructs. Using native mass spectrometry, protein film electrochemistry, and electron paramagnetic resonance spectroscopy, we confirm the previously proposed incorporation of a mixture of [2Fe-2S] and [4Fe-4S] clusters at the AuxI site and are able to assign redox potentials to each of the three iron-sulfur clusters. Significantly, a conservative mutation at AuxI, C268H, shown to selectively incorporate a [4Fe-4S] cluster, catalyzes an enhancement of uncoupled S-adenosylmethionine cleavage relative to WT, together with the elimination of detectable peptide cross-linked product. While a [4Fe-4S] cluster can be tolerated at the AuxI site, the aggregate findings suggest a functional [2Fe-2S] configuration within the AuxI site. PqqE variants with nondestructive ligand replacements at AuxII also show that the reduction potential at this site can be manipulated by changing the electronegativity of the unique aspartate ligand. A number of novel mechanistic features are proposed based on the kinetic and spectroscopic data. Additionally, bioinformatic analyses suggest that the unique ligand environment of PqqE may be relevant to its role in PQQ biosynthesis within an oxygen-dependent biosynthetic pathway.


Asunto(s)
Proteínas Bacterianas/metabolismo , Endopeptidasas/metabolismo , Hierro/metabolismo , Methylobacterium extorquens/química , Azufre/metabolismo , Proteínas Bacterianas/química , Biocatálisis , Cristalografía por Rayos X , Endopeptidasas/química , Hierro/química , Methylobacterium extorquens/metabolismo , Modelos Moleculares , Estructura Molecular , Azufre/química
13.
Biochemistry ; 58(51): 5173-5187, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31769977

RESUMEN

Pyrroloquinoline quinone (PQQ) is an important redox active quinocofactor produced by a wide variety of bacteria. A key step in PQQ biosynthesis is a carbon-carbon cross-link reaction between glutamate and tyrosine side chains within the ribosomally synthesized peptide substrate PqqA. This reaction is catalyzed by the radical SAM enzyme PqqE. Previous X-ray crystallographic and spectroscopic studies suggested that PqqE, like the other members of the SPASM domain family, contains two auxiliary Fe-S clusters (AuxI and AuxII) in addition to the radical SAM [4Fe-4S] cluster. However, a clear assignment of the electron paramagnetic resonance (EPR) signal of each Fe-S cluster was hindered by the isolation of a His6-tagged PqqE variant with an altered AuxI cluster. In this work, we are able to isolate soluble PqqE variants by using a less disruptive strep-tactin chromatographic approach. We have unambiguously identified the EPR signatures for four forms of Fe-S clusters present in PqqE through the use of multifrequency EPR spectroscopy: the RS [4Fe-4S] cluster, the AuxII [4Fe-4S] cluster, and two different clusters ([4Fe-4S] and [2Fe-2S]) bound in the AuxI site. The RS [4Fe-4S] cluster, the AuxII [4Fe-4S] cluster, and the [2Fe-2S] cluster form in the AuxI site can all be reduced by sodium dithionite, with g tensors of their reduced form determined as [2.040, 1.927, 1.897], [2.059, 1.940, 1.903], and [2.004, 1.958, 1.904], respectively. The AuxI [4Fe-4S] cluster that is determined on the basis of its relaxation profile can be reduced only by using low-potential reductants such as Ti(III) citrate or Eu(II)-DTPA to give rise to a g1 = 2.104 signal. Identification of the EPR signature for each cluster paves the way for further investigations of SPASM domain radical SAM enzymes.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón , Endopeptidasas/química , Endopeptidasas/metabolismo , Hierro , Azufre , Biocatálisis , Cofactor PQQ/metabolismo , Dominios Proteicos
14.
J Biol Chem ; 293(4): 1138-1148, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29191828

RESUMEN

In lipoxygenases, the topologically conserved C-terminal domain catalyzes the oxidation of polyunsaturated fatty acids, generating an assortment of biologically relevant signaling mediators. Plant and animal lipoxygenases also contain a 100-150-amino acid N-terminal C2-like domain that has been implicated in interactions with isolated fatty acids and at the phospholipid bilayer. These interactions may lead to increased substrate availability and contribute to the regulation of active-site catalysis. Because of a lack of structural information, a molecular understanding of this lipid-protein interaction remains unresolved. Herein, we employed hydrogen-deuterium exchange MS (HDXMS) to spatially resolve changes in protein conformation upon interaction of soybean lipoxygenase with a fatty acid surrogate, oleyl sulfate (OS), previously shown to act at a site separate from the substrate-binding site. Specific, OS-induced conformational changes are detected both at the N-terminal domain and within the substrate portal nearly 30 Å away. Combining previously measured kinetic properties in the presence of OS with its impact on the Kd for linoleic acid substrate binding, we conclude that OS binding brings about an increase in rate constants for both the ingress and egress of substrate. We discuss the role of OS-induced changes in protein flexibility in the context of changes in the mechanism of substrate acquisition.


Asunto(s)
Medición de Intercambio de Deuterio , Glycine max/enzimología , Ácido Linoleico/química , Lipooxigenasa/química , Proteínas de Soja/química , Regulación Alostérica , Dominios Proteicos , Especificidad por Sustrato
15.
J Am Chem Soc ; 141(10): 4398-4405, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30811189

RESUMEN

Understanding the biosynthesis of cofactors is fundamental to the life sciences, yet to date a few important pathways remain unresolved. One example is the redox cofactor pyrroloquinoline quinone (PQQ), which is critical for C1 metabolism in many microorganisms, a disproportionate number of which are opportunistic human pathogens. While the initial and final steps of PQQ biosynthesis, involving PqqD/E and PqqC, have been elucidated, the precise nature and order of the remaining transformations in the pathway are unknown. Here we show evidence that the remaining essential biosynthetic enzyme PqqB is an iron-dependent hydroxylase catalyzing oxygen-insertion reactions that are proposed to produce the quinone moiety of the mature PQQ cofactor. The demonstrated reactions of PqqB are unprecedented within the metallo ß-lactamase protein family and expand the catalytic repertoire of nonheme iron hydroxylases. These new findings also generate a nearly complete description of the PQQ biosynthetic pathway.


Asunto(s)
Proteínas Bacterianas/química , Dihidroxifenilalanina/análogos & derivados , Oxigenasas de Función Mixta/química , Catálisis , Dihidroxifenilalanina/química , Hidroxilación , Hierro/química , Methylobacterium extorquens/enzimología , Modelos Químicos , Zinc/química
16.
J Am Chem Soc ; 141(4): 1555-1567, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30645119

RESUMEN

Soybean lipoxygenase (SLO) has served as a prototype for understanding the molecular origin of enzymatic rate accelerations. The double mutant (DM) L546A/L754A is considered a dramatic outlier, due to the unprecedented size and near temperature-independence of its primary kinetic isotope effect, low catalytic efficiency, and elevated enthalpy of activation. To uncover the physical basis of these features, we herein apply three structural probes: hydrogen-deuterium exchange mass spectrometry, room-temperature X-ray crystallography and EPR spectroscopy on four SLO variants (wild-type (WT) enzyme, DM, and the two parental single mutants, L546A and L754A). DM is found to incorporate features of each parent, with the perturbation at position 546 predominantly influencing thermally activated motions that connect the active site to a protein-solvent interface, while mutation at position 754 disrupts the ligand field and solvation near the cofactor iron. However, the expanded active site in DM leads to more active site water molecules and their associated hydrogen bond network, and the individual features from L546A and L754A alone cannot explain the aggregate kinetic properties for DM. Using recently published QM/MM-derived ground-state SLO-substrate complexes for WT and DM, together with the thorough structural analyses presented herein, we propose that the impairment of DM is the combined result of a repositioning of the reactive carbon of linoleic acid substrate with regard to both the iron cofactor and a catalytically linked dynamic region of protein.


Asunto(s)
Coenzimas/metabolismo , Glycine max/enzimología , Lipooxigenasa/química , Lipooxigenasa/metabolismo , Metales/metabolismo , Mutación , Dominio Catalítico , Cinética , Lipooxigenasa/genética , Modelos Moleculares , Oxidación-Reducción , Termodinámica
17.
Acc Chem Res ; 51(9): 1966-1974, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30152685

RESUMEN

Hydrogen atom transfer (HAT) is a salient feature of many enzymatic C-H cleavage mechanisms. In systems where kinetic isolation of HAT is achieved, selective labeling of substrate with hydrogen isotopes, such as deuterium, enables the determination of intrinsic kinetic isotope effects (KIEs). While the magnitude of the KIE is itself informative, ultimately the size of the temperature dependence of the KIE, Δ Ea = Ea(D) - Ea(H), serves as a critical, and often misinterpreted (or even ignored) descriptor of the reaction coordinate. As will be highlighted in this Account, Δ Ea is one of the most robust parameters to emerge from studies of enzyme catalyzed hydrogen transfer. Kinetic parameters for C-H reactions via HAT can appear consistent with either classical "over-the-barrier" or "Bell-like tunneling correction" models. However, neither of these models is able to explain the observation of near-zero Δ Ea values with many native enzymes that increase upon extrinsic or intrinsic perturbations to function. Instead, a full tunneling model has been developed that can account for the aggregate trends in the temperature dependence of the KIE. This model is reminiscent of Marcus-like theory for electron tunneling, with the additional incorporation of an H atom donor-acceptor distance (DAD) sampling term for effective wave function overlap; the role of the latter term is manifested in the experimentally determined Δ Ea. Three enzyme systems from this laboratory that illustrate different aspects of HAT are presented: taurine dioxygenase, the dual copper ß-monooxygenases, and soybean lipoxygenase (SLO). The latter provides a particularly compelling system for understanding the properties of hydrogen tunneling, showing systematic increases in Δ Ea upon reduction in the size of hydrophobic residues both proximal and distal from the active site iron cofactor. Of note, recent ENDOR-based studies of enzyme-substrate complexes with SLO indicate an increase in DAD for mutants with increased Δ Ea, observations that are inconsistent with "Bell-like correction" models. Overall, the surmounting kinetic and biophysical evidence corroborates a multidimensional approach for understanding HAT, offering a robust mechanistic explanation for the magnitude and trends of the KIE and Δ Ea. Recent DFT and QM/MM computations on SLO are compared to the developed nonadiabatic analytical constructs, providing considerable insight into ground state structures and reactivity. However, QM/MM is unable to readily reproduce the small Δ Ea values characteristic of native enzymes. Future theoretical developments to capture these experimental observations may necessitate a parsing of protein motions for local, substrate deuteration-sensitive modes from isotope-insensitive modes within the larger conformational landscape, in the process providing deeper understanding of how native enzymes have evolved to transiently optimize their active site configurations.


Asunto(s)
Deuterio/química , Lipooxigenasa/química , Oxigenasas de Función Mixta/química , Tritio/química , Animales , Bacterias/enzimología , Catálisis , Dominio Catalítico/genética , Cinética , Lipooxigenasa/genética , Oxigenasas de Función Mixta/genética , Modelos Químicos , Mutación , Oxidación-Reducción , Plantas/enzimología , Teoría Cuántica , Temperatura
18.
Biochemistry ; 57(8): 1306-1315, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29405700

RESUMEN

The Radical SAM (RS) enzyme PqqE catalyzes the first step in the biosynthesis of the bacterial cofactor pyrroloquinoline quinone, forming a new carbon-carbon bond between two side chains within the ribosomally synthesized peptide substrate PqqA. In addition to the active site RS 4Fe-4S cluster, PqqE is predicted to have two auxiliary Fe-S clusters, like the other members of the SPASM domain family. Here we identify these sites and examine their structure using a combination of X-ray crystallography and Mössbauer and electron paramagnetic resonance (EPR) spectroscopies. X-ray crystallography allows us to identify the ligands to each of the two auxiliary clusters at the C-terminal region of the protein. The auxiliary cluster nearest the RS site (AuxI) is in the form of a 2Fe-2S cluster ligated by four cysteines, an Fe-S center not seen previously in other SPASM domain proteins; this assignment is further supported by Mössbauer and EPR spectroscopies. The second, more remote cluster (AuxII) is a 4Fe-4S center that is ligated by three cysteine residues and one aspartate residue. In addition, we examined the roles these ligands play in catalysis by the RS and AuxII clusters using site-directed mutagenesis coupled with EPR spectroscopy. Lastly, we discuss the possible functional consequences that these unique AuxI and AuxII clusters may have in catalysis for PqqE and how these may extend to additional RS enzymes catalyzing the post-translational modification of ribosomally encoded peptides.


Asunto(s)
Proteínas Bacterianas/química , Endopeptidasas/química , Proteínas Hierro-Azufre/química , Methylobacterium extorquens/química , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Conformación Proteica , Temperatura
19.
J Biol Chem ; 292(40): 16397-16405, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28830931

RESUMEN

Radical S-adenosylmethionine (RS) enzymology has emerged as a major biochemical strategy for the homolytic cleavage of unactivated C-H bonds. At the same time, the post-translational modification of ribosomally synthesized peptides is a rapidly expanding area of investigation. We discuss the functional cross-section of these two disciplines, highlighting the recently uncovered importance of protein-protein interactions, especially between the peptide substrate and its chaperone, which functions either as a stand-alone protein or as an N-terminal fusion to the respective RS enzyme. The need for further work on this class of enzymes is emphasized, given the poorly understood roles performed by multiple, auxiliary iron-sulfur clusters and the paucity of protein X-ray structural data.


Asunto(s)
Proteínas Hierro-Azufre , Chaperonas Moleculares , Procesamiento Proteico-Postraduccional/fisiología , S-Adenosilmetionina , Radicales Libres/química , Radicales Libres/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo
20.
J Am Chem Soc ; 140(3): 900-903, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29323490

RESUMEN

Previous studies of a thermophilic alcohol dehydrogenase (ht-ADH) demonstrated a range of discontinuous transitions at 30 °C that include catalysis, kinetic isotope effects, protein hydrogen-deuterium exchange rates, and intrinsic fluorescence properties. Using the Förster resonance energy transfer response from a Trp-NADH donor-acceptor pair in T-jump studies of ht-ADH, we now report microsecond protein motions that can be directly related to active site chemistry. Two distinctive transients are observed: a slow, kinetic process lacking a temperature break, together with a faster transient that is only detectable above 30 °C. The latter establishes a link between enzyme activity and microsecond protein motions near the cofactor binding site, in a region distinct from a previously detected protein network that communicates with the substrate binding site. Though evidence of direct dynamical links between microsecond protein motions and active site bond cleavage events is extremely rare, these studies highlight the potential of T-jump measurements to uncover such properties.


Asunto(s)
Alcohol Deshidrogenasa/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Geobacillus stearothermophilus/enzimología , Sitios de Unión , Dominio Catalítico , Geobacillus stearothermophilus/química , Cinética , Modelos Moleculares , Movimiento (Física) , NAD/química , Conformación Proteica , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA