Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 464(7290): 870-2, 2010 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-20376144

RESUMEN

Epsilon Aurigae (epsilon Aur) is a visually bright, eclipsing binary star system with a period of 27.1 years. The cause of each 18-month-long eclipse has been a subject of controversy for nearly 190 years because the companion has hitherto been undetectable. The orbital elements imply that the opaque object has roughly the same mass as the visible component, which for much of the last century was thought to be an F-type supergiant star with a mass of approximately 15M[symbol:see text] (M[symbol:see text], mass of the Sun). The high mass-to-luminosity ratio of the hidden object was originally explained by supposing it to be a hyperextended infrared star or, later, a black hole with an accretion disk, although the preferred interpretation was as a disk of opaque material at a temperature of approximately 500 K, tilted to the line of sight and with a central opening. Recent work implies that the system consists of a low-mass (2.2M[symbol:see text]-3.3M[symbol:see text]) visible F-type star, with a disk at 550 K that enshrouds a single B5V-type star. Here we report interferometric images that show the eclipsing body moving in front of the F star. The body is an opaque disk and appears tilted as predicted. Adopting a mass of 5.9M[symbol:see text] for the B star, we derive a mass of approximately (3.6 +/- 0.7)M[symbol:see text] for the F star. The disk mass is dynamically negligible; we estimate it to contain approximately 0.07M[symbol:see text] (M[symbol:see text], mass of the Earth) if it consists purely of dust.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA