Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Synchrotron Radiat ; 30(Pt 3): 655-661, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37093013

RESUMEN

A full-field X-ray fluorescence imaging (FXI) station was recently developed at beamline BL8 of Synchrotron Light Research Institute (SLRI), Thailand. An unfocused, synchrotron X-ray beam from the bending magnet with a size of 2 mm (vertical) × 13 mm (horizontal) and photon energy of 10 keV was employed in the FXI experiments. A sample stage was tilted by 7.5° to enlarge the vertical beam size. X-ray fluorescence images were recorded by an energy-dispersive, 256 × 256 array, pn-type charge coupled device detector equipped with a polycapillary optics, providing a full-frame image size of 12.3 mm × 12.3 mm. The incident photon flux per pixel was 3 × 104 photons s-1 (100 mA)-1 and the experimental spatial resolution was 68 µm. Image processing was carried out offline using an in-house MATLAB program capable of elemental selection and inhomogeneity intensity correction. Elemental detection limits of FXI were found to decrease with increasing atomic number, i.e. 0.3 to 0.03 wt% for Z = 19 (K) to 30 (Zn). Compared with the BL6b microbeam imaging (µXI) station at SLRI with higher photon flux per pixel, 3 × 1010 photons s-1 (100 mA)-1, a tenfold sample area can be obtained and 13 times higher peak-to-background (PKB) ratio at Zn Kα measured with the same experimental time (8 h). Simultaneous measurement of FXI is more time-efficient against the long overhead times of µXI scanning over large pixel numbers, >65000. To demonstrate potential applications of the new FXI station, various types of samples were examined: dendritic limestone, ancient bronze and dried fish. Analyzed elemental images enabled us to identify areas rich in Mn on the limestone, Sn and Cu separation in the bronze, and Zn nutrition in the dried fish eye.

2.
J Environ Manage ; 316: 115282, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35576710

RESUMEN

Restoring drained peatlands has been practiced to mitigate climate change, regulate water quality, and restore biodiversity. However, no information is available on the long-term impact of drainage and restoration of peatlands on total sulfur (St), fractions, and S species. We investigated the long-term drained and restored forested and coastal peatlands and percolation mires using the sequential S fractionation and S K-edge X-ray near-edge absorption structure (XANES) spectroscopy analysis to address this knowledge gap. The St concentrations in the drained forested peatland and percolation mire were low by 4 and 1.5 folds compared to their respective restored peatlands at the topsoil horizons. Similarly, the H2O-S and NaH2PO4-S fractions in the drained forested peatland (28 and 18 mg kg-1) were lower than in the restored forested peatland (165 and 166 mg kg-1). However, the S fractions were higher in the drained percolation mire (449 and 247 mg kg-1) than in the restored percolation mire (150 and 41 mg kg-1). The relative proportion of the residual-S fraction (70-97% of St) was equivalent to the relative proportion of organic S species (76-97% of St) derived from the XANES analysis. The XANES analysis revealed the reduced organic S (44-62%), organic S with intermediate oxidation states (16-47%), strongly reduced (0-21%) and oxidized inorganic S species (4-12%) of the St. The results indicate that long-term restoration conserved St, decreased labile S fractions and enriched the strongly reduced inorganic and organic S species.


Asunto(s)
Suelo , Humedales , Biodiversidad , Alemania , Suelo/química , Azufre
3.
Small ; 17(22): e2006541, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33733619

RESUMEN

5-hydroxylmethylfurfural (HMF) is a bio-based chemical that can be prepared from natural abundant glucose by using combined Brønsted-Lewis acid catalysts. In this work, Al3+ catalytic site has been grafted on Brønsted metal-organic frameworks (MOFs) to enhance Brønsted-Lewis acidity of MOF catalysts for a one-pot glucose-to-HMF transformation. The uniform porous structure of zirconium-based MOFs allows the optimization of both acid strength and density of acid sites in MOF-based catalysts by incorporating the desired amount of Al3+ catalytic sites at the organic linker. Al3+ sites generated via a post-synthetic modification act as Lewis acid sites located adjacent to the Brønsted sulfonated sites of MOF structure. The local structure of the Al3+ sites incorporated in MOFs has been elucidated by X-ray absorption near-edge structure (XANES) combined with density functional theory (DFT) calculations. The cooperative effect from Brønsted and Lewis acids located in close proximity and the high acid density is demonstrated as an important factor to achieve high yield of HMF.


Asunto(s)
Estructuras Metalorgánicas , Ácidos , Catálisis , Glucosa , Circonio
4.
Environ Sci Technol ; 54(24): 15722-15730, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33244971

RESUMEN

An improved quantitative and qualitative understanding of the interaction of per- and polyfluoroalkyl substances (PFASs) and short-range ordered Fe (hydr)oxides is crucial for environmental risk assessment in environments low in natural organic matter. Here, we present data on the pH-dependent sorption behavior of 12 PFASs onto ferrihydrite. The nature of the binding mechanisms was investigated by sulfur K-edge X-ray absorption near-edge structure (XANES) spectroscopy and by phosphate competition experiments. Sulfur K-edge XANES spectroscopy showed that the sulfur atom of the head group of the sulfonated PFASs retained an oxidation state of +V after adsorption. Furthermore, the XANES spectra did not indicate any involvement of inner-sphere surface complexes in the sorption process. Adsorption was inversely related to pH (p < 0.05) for all PFASs (i.e., C3-C5 and C7-C9 perfluorocarboxylates, C4, C6, and C8 perfluorosulfonates, perfluorooctane sulfonamide, and 6:2 and 8:2 fluorotelomer sulfonates). This was attributed to the pH-dependent charge of the ferrihydrite surface, as reflected in the decrease of surface ζ-potential with increasing pH. The importance of surface charge for PFAS adsorption was further corroborated by the observation that the adsorption of PFASs decreased upon phosphate adsorption in a way that was consistent with the decrease in ferrihydrite ζ-potential. The results show that ferrihydrite can be an important sorbent for PFASs with six or more perfluorinated carbons in acid environments (pH ≤ 5), particularly when phosphate and other competitors are present in relatively low concentrations.


Asunto(s)
Fluorocarburos , Adsorción , Alcanosulfonatos , Compuestos Férricos
5.
Environ Sci Technol ; 54(5): 2812-2820, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32068384

RESUMEN

Phosphorus (P) is an essential element for life on Earth, with an important and oftentimes unaccounted organic biogeochemical component. Current methods for the quantification of different organic P compounds in environmental samples (e.g., soils, sediments) are based on extraction techniques and often associated with incomplete P recovery or sample changes. In this study, we present a protocol for the quantification of different organic and inorganic P species in soils using synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy at the P L2,3-edge. Its accuracy and precision was evaluated by analyzing 40 standard mixtures composed of seven different inorganic and organic P compounds (with a mean of R2 = 0.85). In addition, we quantified the P species of two soils and two agro-industrial byproducts using P L2,3-edge XANES spectroscopy and the results were compared with those obtained by P K-edge XANES or 31P NMR spectroscopy. Using the P L2,3-edge, we identified different organic P species, including those not identified by the common P K-edge XANES. However, there is a consistent underestimation of organic polyphosphates. Overall, the application of P L2,3-edge XANES provides a higher level of information than by P K-edge XANES, although the ubiquitous use of this novel methodology is still limited to samples with a phosphorus content above 3 mg g-1.


Asunto(s)
Compuestos de Fósforo , Fósforo , Suelo , Espectroscopía de Absorción de Rayos X , Rayos X
6.
Environ Sci Technol ; 53(17): 10131-10138, 2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31418551

RESUMEN

Acid-soluble soil phosphorus (P) is a potential resource in P-limited agricultural systems that may become critical as global P sources decrease in the future. The fate of P in three alkaline Vertisols, a major agricultural soil type, after acidic incubation was investigated using synchrotron-based K-edge X-ray absorption near-edge structure (XANES) spectroscopy, geochemical modeling, wet chemistry soil extraction, and a P sorption index. Increases in labile P generally coincided with decreased stability and dissolution of calcium phosphate (CaP) minerals. However, only a minor proportion of the CaP dissolved in each soil was labile. In two moderate-P soils (800 mg P kg-1), XANES indicated that approximately 160 mg kg-1 was repartitioned to sorbed phases at pH 5.1 of one soil and at pH 4.4 of the second; however, only 40 and 28% were labile, respectively. In a high-P soil (8900 mg P kg-1), XANES indicated a decrease in P of 1170 mg kg-1 from CaP minerals at pH 3.8, of which approximately only 33% was labile. Phosphorus mobilized by agricultural practices without concurrent uptake by plants may be repartitioned to sorbed forms that are not as plant-available as prior to acidification.


Asunto(s)
Contaminantes del Suelo , Suelo , Agricultura , Fosfatos de Calcio , Fosfatos , Fósforo , Espectroscopía de Absorción de Rayos X
7.
J Synchrotron Radiat ; 25(Pt 6): 1736-1744, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30407184

RESUMEN

Phosphorus (P) K-edge X-ray absorption near-edge structure (XANES) spectra of orthophosphate (oPO4) bound to soil FeIII minerals (e.g. ferrihydrite, goethite) show a pre-edge signal at 2148-2152 eV. It is unknown whether organic P bound to FeIII oxyhydroxides also show this feature. Otherwise, Fe-bound soil P may be underestimated by P K-edge XANES spectroscopy, because a large portion of Fe oxyhydroxide-bound P in soils is organic P. K-edge XANES spectra were obtained for different organic P compounds present in soils [inositol hexaphosphate (IHP), glucose-6-phosphate (G6P), adenosine triphosphate (ATP)] after sorption to ferrihydrite or goethite and compared with spectra of oPO4 adsorbed to these minerals. P sorption to ferrihydrite increased in the sequence IHP ≪ G6P < oPO4 < ATP. P sorption to goethite increased in the sequence G6P < oPO4 ≪ ATP = IHP. Pre-edge signals in P K-edge XANES spectra of organic P adsorbed to Fe oxyhydroxides were markedly smaller compared with those of oPO4 adsorbed to these minerals and absent for FeIII oxyhydroxide-bound ATP as well as goethite-bound IHP. Linear combination fitting (LCF) performed on spectra of IHP, G6P or ATP adsorbed to ferrihydrite or goethite, using only spectra of FeIII oxyhydroxide-bound oPO4 as reference compounds for Fe-bound P, erroneously assigned >93% (ferrihydrite) or >41% (goethite) of Fe-bound P to non-Fe-bound P species. Inclusion of FeIII oxyhydroxide-bound IHP as reference compounds markedly increased the recovery of oxyhydroxide-bound organic P. Thus, Fe-bound soil P has probably often been underestimated by LCF in soil XANES studies where IHP adsorbed to ferrihydrite and to goethite were not included as reference compounds.

8.
Arch Microbiol ; 200(3): 401-412, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29181710

RESUMEN

The antimicrobial properties of copper ions have been known for a long time. However, the exact mechanism of action of the transition metal on microorganisms has long been unclear. X-ray absorption near-edge structure (XANES) spectroscopy at the Cu K edge allows the determination of copper speciation in Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa that have been treated with Cu(II) and Cu(I) solutions. The death/inactivation of the bacteria was observed using plate counting and light microscopy. The Cu K-XANES spectra of the two Gram-negative bacteria are different than those of the Gram-positive strain. The results clearly show that the Cu+-S bond contributes to the antibacterial activity of copper, as in the case of silver. The detailed evaluation of the differentiated absorption spectra shows that Cu+ (not Cu2+) is the dominant ion that binds to the bacteria. Because Cu+ is not the most common copper ion, copper is not as effective an antibacterial agent as silver, whose common valency is actually + 1. Any reaction of copper with phosphorus from the bacteria can be excluded after the evaluation of the absorption spectra.


Asunto(s)
Antibacterianos/química , Cobre/química , Escherichia coli/química , Nitratos/química , Pseudomonas aeruginosa/química , Staphylococcus aureus/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Cobre/metabolismo , Cobre/farmacología , Cisteína/química , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Glutatión/química , Metionina/química , Pruebas de Sensibilidad Microbiana , Nitratos/metabolismo , Nitratos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Espectroscopía de Absorción de Rayos X
9.
J Phys Chem A ; 122(37): 7413-7420, 2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30156411

RESUMEN

The structures of hydrated phosphoric acid and phosphate ions (H2PO4-, HPO42-, and PO43-) in aqueous solution have been determined by P K-edge EXAFS and large angle X-ray scattering (LAXS). The P-O bond distance in all phosphate species studied is close to 1.53 Å. The P-(O)···Oaq distances have been refined to ca. 3.6 Å from the LAXS data giving a P-O···Oaq bond angle close to tetrahedral, suggesting that each oxygen or OH group of phosphoric acid and dihydrogen phosphate, on average, hydrogen bind three water molecules. The (P-)O(-H)···Oaq and (P-)O···(H-)Oaq hydrogen bonds in hydrated phosphoric acid and the H2PO4- ion are shorter than the hydrogen bonds in neat water. This supports previous infrared spectroscopic studies claiming that the hydrogen bonds in hydrated phosphoric acid and phosphate ions are stronger than the hydrogen bonds in neat water. Phosphoric acid and phosphate ions can therefore be regarded as structure making solutes. This is the first study applying transmission mode X-ray absorption spectroscopy (XAS) data collection on the P K-edge. It shows that XAS spectra collected in transmission mode have a much better S/N ratio than data collected in fluorescence mode, allowing accurate determination of P-O bond distances. Furthermore, P K-edge EXAFS data collected in fluorescence mode display a higher amplitude at high k than expected due to increasing radiated volume of the sample with increasing energy as the total absorption decreases sharply with increasing energy of the X-rays. As a result, the fluorescence signal becomes nonproportional to the intensity of the X-ray beam over the EXAFS spectrum. This results in an increasing amplitude of the EXAFS function with increasing energy of the X-ray beam resulting in too small Debye-Waller coefficients.

10.
J Synchrotron Radiat ; 24(Pt 3): 707-716, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28452765

RESUMEN

The SUT-NANOTEC-SLRI beamline was constructed in 2012 as the flagship of the SUT-NANOTEC-SLRI Joint Research Facility for Synchrotron Utilization, co-established by Suranaree University of Technology (SUT), National Nanotechnology Center (NANOTEC) and Synchrotron Light Research Institute (SLRI). It is an intermediate-energy X-ray absorption spectroscopy (XAS) beamline at SLRI. The beamline delivers an unfocused monochromatic X-ray beam of tunable photon energy (1.25-10 keV). The maximum normal incident beam size is 13 mm (width) × 1 mm (height) with a photon flux of 3 × 108 to 2 × 1010 photons s-1 (100 mA)-1 varying across photon energies. Details of the beamline and XAS instrumentation are described. To demonstrate the beamline performance, K-edge XANES spectra of MgO, Al2O3, S8, FeS, FeSO4, Cu, Cu2O and CuO, and EXAFS spectra of Cu and CuO are presented.

11.
J Synchrotron Radiat ; 23(2): 532-44, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26917141

RESUMEN

Direct speciation of soil phosphorus (P) by linear combination fitting (LCF) of P K-edge XANES spectra requires a standard set of spectra representing all major P species supposed to be present in the investigated soil. Here, available spectra of free- and cation-bound inositol hexakisphosphate (IHP), representing organic P, and of Fe, Al and Ca phosphate minerals are supplemented with spectra of adsorbed P binding forms. First, various soil constituents assumed to be potentially relevant for P sorption were compared with respect to their retention efficiency for orthophosphate and IHP at P levels typical for soils. Then, P K-edge XANES spectra for orthophosphate and IHP retained by the most relevant constituents were acquired. The spectra were compared with each other as well as with spectra of Ca, Al or Fe orthophosphate and IHP precipitates. Orthophosphate and IHP were retained particularly efficiently by ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated soil organic matter (SOM), but far less efficiently by hematite, Ca-saturated montmorillonite and Ca-saturated SOM. P retention by dolomite was negligible. Calcite retained a large portion of the applied IHP, but no orthophosphate. The respective P K-edge XANES spectra of orthophosphate and IHP adsorbed to ferrihydrite, boehmite, Al-saturated montmorillonite and Al-saturated SOM differ from each other. They also are different from the spectra of amorphous FePO4, amorphous or crystalline AlPO4, Ca phosphates and free IHP. Inclusion of reference spectra of orthophosphate as well as IHP adsorbed to P-retaining soil minerals in addition to spectra of free or cation-bound IHP, AlPO4, FePO4 and Ca phosphate minerals in linear combination fitting exercises results in improved fit quality and a more realistic soil P speciation. A standard set of P K-edge XANES spectra of the most relevant adsorbed P binding forms in soils is presented.

12.
Heliyon ; 10(9): e30325, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38737254

RESUMEN

Core-shell composite catalysts composing of AgO@SnO2/ZSM-5 embedded by NixMg4-xAlO LDOs with various Ni/Mg ratios were characterized and tested for the activity on the conversion of glycerol to valuable chemicals under a base-free and external H2-free condition. As a result, the catalytic performance of an embedded composite was found greater than that of its individual constituents, owing to the synergy between a NixMg4-xAlO lodge and embedded AgO@SnO2/ZSM-5. The highest yield of 1,2-propanediol and lactic acid was achieved at the Ni/Mg ratio of 0.2/3.8. NixMg4-xAlO lodges were found to simultaneously drive glycerol dehydration to acetol and glycerol reforming, driven by Ni sites, forming in-situ H2 that enhances 1,2-propanediol formation whereas the AgO@SnO2/ZSM-5 clusters governed acetol oxidation and Cannizzaro reaction that led to the formation of lactic acid. At a high Ni/Mg ratio, the NixMg4-xAlO lodges completely covered AgO@SnO2/ZSM-5 clusters entirely, resulting in the suppression of lactic acid yield due to over-oxidation.

13.
ACS Omega ; 9(26): 28637-28647, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38973900

RESUMEN

Developing a metallic catalyst for converting furfural (FAL) to highly valuable products such as cyclopentanone (CPO) is important for fine chemical synthesis by the efficient utilization of biomass resources. The presence of diverse unsaturated carbon atoms in FAL and the rearrangement of oxygen atoms hinder the production of CPO. We developed an optimal nickel (Ni)-to-platinum (Pt) molar ratio (1:0.007) for a bimetallic Ni-Pt/alumina (Al2O3) catalyst with a low Pt loading via an impregnation method to efficiently catalyze the selective hydrogenation of FAL in an aqueous solution to form CPO. The comprehensive characterizations by X-ray diffraction and X-ray absorption near edge structure analyses elucidated the formation of Ni0/Pt0 and Ni2+/Pt4+ after reduction by H2. The addition of a low amount of the Pt-Ni/Al2O3 catalyst resulted in an alleviation of H2 reduction behavior detected by hydrogen temperature-programmed reduction, accompanied by low H2 desorption ability observed by hydrogen temperature-programmed desorption. The catalytic activity of Ni-Pt/Al2O3 was higher than those of Ni/Al2O3 and Pt/Al2O3 catalysts. The maximum CPO yield was 66% with 93% FAL conversion under the optimized conditions (160 °C, 20 bar of H2 pressure, and 2 h). Isotopic deuterium oxide (D2O) labeling revealed the transfer of deuterium (D) atoms from D2O to the intermediates and products during hydrogenation and rearrangement, which confirmed that water was a medium for rearrangement and the source of hydrogen for the reaction. This study developed an efficient catalyst for the catalytic hydrogenation and ring rearrangement of FAL into CPO.

14.
Biometals ; 26(3): 489-505, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23690075

RESUMEN

The association of arbuscular mycorrhizal fungi (AMF) with the roots of Lindenbergia philippensis (Cham.) Benth., sampled from a Zn-contaminated settling pond at a zinc smelter, significantly enhanced Zn accumulation (72,540 ± 5,092 mg kg⁻¹ dry weight) in rhizosphere sediment amended with 1,000 mg L⁻¹ of Zn sulfate solution compared to fungicide-treatments that suppressed AMF colonization. This can be explained by a significant proportion of Zn being found in rectangular crystals that were associated with the root mucilaginous sheath. Despite this, all treatments maintained the same Zn coordination geometry in both Zn oxidation state and the coordinated neighbouring atoms. X-ray absorption spectroscopy (XAS) showed a Zn(II) oxidation state as a core atom and associated with six oxygen atoms symmetrically arranged in an octahedral coordination and coordinated with sulfur. The results may indicate a role for AMF in enhancing Zn immobilization in the rhizosphere of indigenous plants that successfully colonize Zn mining and smelting disposal sites.


Asunto(s)
Bignoniaceae/metabolismo , Bignoniaceae/microbiología , Sedimentos Geológicos/química , Micorrizas/metabolismo , Rizosfera , Zinc/metabolismo , Bignoniaceae/crecimiento & desarrollo , Sedimentos Geológicos/microbiología
15.
Sci Rep ; 13(1): 10769, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402753

RESUMEN

This study explores influence of charge transfer and X-ray absorption characteristics in aluminum (Al) and copper (Cu) co-doped zinc oxide (ZnO) nanostructures for perovskite solar cell electrodes. Sol-gel technique was employed to synthesize the nanostructures, and their optical and morphological properties were investigated. X-ray diffraction (XRD) analysis confirmed high crystallinity and also single-phase composition of all the samples, particularly up to 5% Al co-doping. Field emission scanning electron microscopy (FESEM) exhibited the formation of pseudo-hexagonal wurtzite nanostructure and the transition to nanorods at 5% Al co-doping. Diffuse reflectance spectroscopy indicated a reduction in the optical band gap of co-doped zinc oxide from 3.11 to 2.9 eV with increasing Al doping. Photoluminescence spectra (PL) exhibited a decrease in peak intensity, suggesting enhanced conductivity in ZnO, also confirmed from I-V measurements. Near-edge X-ray absorption fine structure (NEXAFS) analysis depicts that charge transfer from Al to oxygen (O) species enhanced the photosensing properties of the nanostructure, which was supported by FESEM micrographs and PL spectra. Furthermore, the study discovered that 5% Al co-doping significantly reduced the density of emission defects (deep-level) in Cu-ZnO nanostructure. These findings highlight the potential of Cu and Al co-doped ZnO materials for perovskite solar cell electrodes, as their improved optical and morphological properties resulting from charge transfer could enhance device performance. The investigation of charge transfer and X-ray absorption characteristics provides valuable insights into the underlying mechanisms and behaviors of the co-doped ZnO nanostructures. However, further research is required to delve into the intricate hybridization resulting from charge transfer and explore the broader impact of co-doping on other properties of the nanostructures, enabling a comprehensive understanding of their potential applications in perovskite solar cells.

16.
J Synchrotron Radiat ; 19(Pt 6): 930-6, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23093751

RESUMEN

Beamline BL8 of the Synchrotron Light Research Institute (Thailand) is routinely operated for X-ray absorption spectroscopy (XAS) in an intermediate photon energy range (1.25-10 keV). The photon energy is scanned by using a double-crystal monochromator, the crystal pair of which can be interchanged among KTP(011), InSb(111), Si(111) and Ge(220). The experimental set-up conveniently facilitates XAS measurements in transmission and fluorescence-yield modes at several K-edges of elements ranging from magnesium to zinc. Instrumentation and specification of the beamline and the XAS station are described, together with the determination of the available photon flux [0.1-6 × 10(10) photon s(-1) (100 mA)(-1)], energy resolution (1-5 × 10(-4)) and stability of photon energy calibration (0.07 eV), representing the beamline performance. Data quality and accuracy of XANES and EXAFS measured at BL8 are compared with those of other well established beamlines. A noted distinction of BL8 is its relatively high sensitivity for studying phosphorous, sulfur and chlorine in diluted systems and its maximum beam size of 14 mm (width) × 1 mm (height), which is suitable for bulk characterization.

17.
Dalton Trans ; 51(21): 8192-8207, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35583237

RESUMEN

Solid titanium phosphate, TiP, materials hold great promise for wastewater treatment for removal of metal ions and complexes. A series of TiP materials, synthesised at mild conditions and short reaction times, have been structurally characterised using solid-state X-ray absorption spectroscopy, phosphorus and titanium K edge XANES and EXAFS, and 31P and 47/49Ti NMR spectroscopy. The titanium K edge EXAFS data of α-Ti(HPO4)2·H2O (α-TiP) revealed octahedral coordination of oxygens around titanium. Repeated washing of primary ß-/γ-TiP with hydrochloric acid results in formation of a weakly ordered solid, TiO(OH)(H2PO4)·H2O, TiP1-H. The structure of TiP1-H is shown by Ti EXAFS to be a titanyl compound, containing a short TiO bond. The analogous data for linked titanium phosphate compounds (LTP) disclosed that inter-linkage occurs between α-TiP and titanyl phosphate units, supported by 31P-31P NOESY NMR data. 47/49Ti NMR and Ti pre-edge XANES show evidence of two different titanium environments in LTP, one very similar to that observed in TiP1-H and a second more symmetric octahedral environment. Data are discussed in terms of induced acidic hydrolyses of titanium(IV) and phosphate counterpart during washings with hydrochloric acid and water. A straightforward relation between synthesis parameters/post synthetic treatment and structural re-arrangement in the materials is established.

18.
Nanomaterials (Basel) ; 12(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35159819

RESUMEN

The photocatalytic reduction of carbon dioxide (CO2) into value-added chemicals is considered to be a green and sustainable technology, and has recently gained considerable research interest. In this work, titanium dioxide (TiO2) supported Pt, Pd, Ni, and Cu catalysts were synthesized by photodeposition. The formation of various metal species on an anatase TiO2 surface, after ultraviolet (UV) light irradiation, was investigated insightfully by the X-ray absorption near edge structure (XANES) technique. CO2 reduction under UV-light irradiation at an ambient pressure was demonstrated. To gain an insight into the charge recombination rate during reduction, the catalysts were carefully investigated by the intensity modulated photocurrent spectroscopy (IMPS) and photoluminescence spectroscopy (PL). The catalytic behaviors of the catalysts were investigated by density functional theory using the self-consistent Hubbard U-correction (DFT+U) approach. In addition, Mott-Schottky measurement was employed to study the effect of energy band alignment of metal-semiconductor on CO2 photoreduction. Heterojunction formed at Pt-, Pd-, Ni-, and Cu-TiO2 interface has crucial roles on the charge recombination and the catalytic behaviors. Furthermore, it was found that Pt-TiO2 provides the highest methanol yield of 17.85 µmol/gcat/h, and CO as a minor product. According to the IMPS data, Pt-TiO2 has the best charge transfer ability, with the mean electron transit time of 4.513 µs. We believe that this extensive study on the junction between TiO2 could provide a profound understanding of catalytic behaviors, which will pave the way for rational designs of novel catalysts with improved photocatalytic performance for CO2 reduction.

19.
Biogeochemistry ; 158(1): 39-72, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35221401

RESUMEN

Sustainable forest management requires understanding of ecosystem phosphorus (P) cycling. Lang et al. (2017) [Biogeochemistry, https://doi.org/10.1007/s10533-017-0375-0] introduced the concept of P-acquiring vs. P-recycling nutrition strategies for European beech (Fagus sylvatica L.) forests on silicate parent material, and demonstrated a change from P-acquiring to P-recycling nutrition from P-rich to P-poor sites. The present study extends this silicate rock-based assessment to forest sites with soils formed from carbonate bedrock. For all sites, it presents a large set of general soil and bedrock chemistry data. It thoroughly describes the soil P status and generates a comprehensive concept on forest ecosystem P nutrition covering the majority of Central European forest soils. For this purpose, an Ecosystem P Nutrition Index (ENI P ) was developed, which enabled the comparison of forest P nutrition strategies at the carbonate sites in our study among each other and also with those of the silicate sites investigated by Lang et al. (2017). The P status of forest soils on carbonate substrates was characterized by low soil P stocks and a large fraction of organic Ca-bound P (probably largely Ca phytate) during early stages of pedogenesis. Soil P stocks, particularly those in the mineral soil and of inorganic P forms, including Al- and Fe-bound P, became more abundant with progressing pedogenesis and accumulation of carbonate rock dissolution residue. Phosphorus-rich impure, silicate-enriched carbonate bedrock promoted the accumulation of dissolution residue and supported larger soil P stocks, mainly bound to Fe and Al minerals. In carbonate-derived soils, only low P amounts were bioavailable during early stages of pedogenesis, and, similar to P-poor silicate sites, P nutrition of beech forests depended on tight (re)cycling of P bound in forest floor soil organic matter (SOM). In contrast to P-poor silicate sites, where the ecosystem P nutrition strategy is direct biotic recycling of SOM-bound organic P, recycling during early stages of pedogenesis on carbonate substrates also involves the dissolution of stable Ca-Porg precipitates formed from phosphate released during SOM decomposition. In contrast to silicate sites, progressing pedogenesis and accumulation of P-enriched carbonate bedrock dissolution residue at the carbonate sites promote again P-acquiring mechanisms for ecosystem P nutrition. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10533-021-00884-7.

20.
Environ Sci Technol ; 45(7): 2878-86, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21405114

RESUMEN

Defined, quartz-diluted mixtures of sulfur (S) compounds with different oxidation state (OS) were analyzed by K-edge XANES spectroscopy using linear combination fitting (LCF) and spectrum deconvolution by fitting several Gaussian and arctangent functions (GCF). Additionally, for different soils the S speciation as calculated by both methods was compared with results of a wet-chemical S speciation. For mixtures of FeS, L-cysteine, and Na2SO4, the S speciation was recovered with satisfactory accuracy and precision by both methods at the 2 and 0.2 mg S g(-1) level. For GCF, white-line peaks must be normalized with respect to their OS-specific absorption cross-section. LCF must be conducted with dilute reference compounds to avoid self-absorption effects. For mixtures of FeS, FeS2, S°, and L-cysteine, both procedures showed poor accuracy. For the soils, similar percentages of reduced inorganic S, organic S, and sulfate were calculated by LCF, GCF, and wet chemical S speciation. GCF allows a fair estimation of S species groups with different OS (inorganic reduced S, organic reduced S, organic intermediate S, oxidized S) in soils without standards. If dilute standards of all S compounds assumed to be present in a sample are available, LCF is more objective and allows a more detailed S speciation.


Asunto(s)
Contaminantes del Suelo/química , Suelo/química , Azufre/química , Espectroscopía de Absorción de Rayos X/métodos , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Espectroscopía de Absorción de Rayos X/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA