Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 565(7741): 581-586, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30700868

RESUMEN

Focusing laser light onto a very small target can produce the conditions for laboratory-scale nuclear fusion of hydrogen isotopes. The lack of accurate predictive models, which are essential for the design of high-performance laser-fusion experiments, is a major obstacle to achieving thermonuclear ignition. Here we report a statistical approach that was used to design and quantitatively predict the results of implosions of solid deuterium-tritium targets carried out with the 30-kilojoule OMEGA laser system, leading to tripling of the fusion yield to its highest value so far for direct-drive laser fusion. When scaled to the laser energies of the National Ignition Facility (1.9 megajoules), these targets are predicted to produce a fusion energy output of about 500 kilojoules-several times larger than the fusion yields currently achieved at that facility. This approach could guide the exploration of the vast parameter space of thermonuclear ignition conditions and enhance our understanding of laser-fusion physics.

2.
Phys Rev Lett ; 131(10): 105101, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37739360

RESUMEN

In direct-drive inertial confinement fusion, the laser bandwidth reduces the laser imprinting seed of hydrodynamic instabilities. The impact of varying bandwidth on the performance of direct-drive DT-layered implosions was studied in targets with different hydrodynamic stability properties. The stability was controlled by changing the shell adiabat from (α_{F}≃5) (more stable) to (α_{F}≃3.5) (less stable). These experiments show that the performance of lower adiabat implosions improves considerably as the bandwidth is raised indicating that further bandwidth increases, beyond the current capabilities of OMEGA, would be greatly beneficial. These results suggest that the future generation of ultra-broadband lasers could enable achieving high convergence and possibly high gains in direct drive ICF.

3.
Phys Rev Lett ; 127(10): 105001, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34533333

RESUMEN

Statistical modeling of experimental and simulation databases has enabled the development of an accurate predictive capability for deuterium-tritium layered cryogenic implosions at the OMEGA laser [V. Gopalaswamy et al.,Nature 565, 581 (2019)10.1038/s41586-019-0877-0]. In this letter, a physics-based statistical mapping framework is described and used to uncover the dependencies of the fusion yield. This model is used to identify and quantify the degradation mechanisms of the fusion yield in direct-drive implosions on OMEGA. The yield is found to be reduced by the ratio of laser beam to target radius, the asymmetry in inferred ion temperatures from the ℓ=1 mode, the time span over which tritium fuel has decayed, and parameters related to the implosion hydrodynamic stability. When adjusted for tritium decay and ℓ=1 mode, the highest yield in OMEGA cryogenic implosions is predicted to exceed 2×10^{14} fusion reactions.

4.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200011, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33280561

RESUMEN

Laser-direct drive (LDD), along with laser indirect (X-ray) drive (LID) and magnetic drive with pulsed power, is one of the three viable inertial confinement fusion approaches to achieving fusion ignition and gain in the laboratory. The LDD programme is primarily being executed at both the Omega Laser Facility at the Laboratory for Laser Energetics and at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. LDD research at Omega includes cryogenic implosions, fundamental physics including material properties, hydrodynamics and laser-plasma interaction physics. LDD research on the NIF is focused on energy coupling and laser-plasma interactions physics at ignition-scale plasmas. Limited implosions on the NIF in the 'polar-drive' configuration, where the irradiation geometry is configured for LID, are also a feature of LDD research. The ability to conduct research over a large range of energy, power and scale size using both Omega and the NIF is a major positive aspect of LDD research that reduces the risk in scaling from OMEGA to megajoule-class lasers. The paper will summarize the present status of LDD research and plans for the future with the goal of ultimately achieving a burning plasma in the laboratory. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

5.
Phys Rev Lett ; 123(23): 235001, 2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31868457

RESUMEN

The material release on the side opposite to the laser drive of a CH shell was probed at conditions relevant to inertial confinement fusion. The release was found to expand further with a longer scale length than that predicted by radiation-hydrodynamic simulations. The simulations show that a relaxation of the back side of the shell consistent with measurements explains the experimentally observed reduction in inertial confinement fusion implosion performance-specifically, reduced areal density at peak compression.

6.
Phys Rev Lett ; 123(6): 065001, 2019 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-31491185

RESUMEN

Using highly resolved 3D radiation-hydrodynamic simulations, we identify a novel mechanism by which the deleterious impact of laser imprinting is mitigated in direct-drive inertial confinement fusion. Unsupported shocks and associated rarefaction flows, commonly produced with short laser bursts, are found to reduce imprint modulations prior to target acceleration. Optimization through the choice of laser pulse with picket(s) and target dimensions may improve the stability of lower-adiabat designs, thus providing the necessary margin for ignition-relevant implosions.

7.
Phys Rev Lett ; 123(16): 165001, 2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31702328

RESUMEN

Neutron spectra from secondary ^{3}H(d,n)α reactions produced by an implosion of a deuterium-gas capsule at the National Ignition Facility have been measured with order-of-magnitude improvements in statistics and resolution over past experiments. These new data and their sensitivity to the energy loss of fast tritons emitted from thermal ^{2}H(d,p)^{3}H reactions enable the first statistically significant investigation of charged-particle stopping via the emitted neutron spectrum. Radiation-hydrodynamic simulations, constrained to match a number of observables from the implosion, were used to predict the neutron spectra while employing two different energy loss models. This analysis represents the first test of stopping models under inertial confinement fusion conditions, covering plasma temperatures of k_{B}T≈1-4 keV and particle densities of n≈(12-2)×10^{24} cm^{-3}. Under these conditions, we find significant deviations of our data from a theory employing classical collisions whereas the theory including quantum diffraction agrees with our data.

8.
Phys Rev Lett ; 121(4): 042501, 2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30095940

RESUMEN

Full calculations of six-nucleon reactions with a three-body final state have been elusive and a long-standing issue. We present neutron spectra from the T(t,2n)α (TT) reaction measured in inertial confinement fusion experiments at the OMEGA laser facility at ion temperatures from 4 to 18 keV, corresponding to center-of-mass energies (E_{c.m.}) from 16 to 50 keV. A clear difference in the shape of the TT-neutron spectrum is observed between the two E_{c.m.}, with the ^{5}He ground state resonant peak at 8.6 MeV being significantly stronger at the higher than at the lower energy. The data provide the first conclusive evidence of a variant TT-neutron spectrum in this E_{c.m.} range. In contrast to earlier available data, this indicates a reaction mechanism that must involve resonances and/or higher angular momenta than L=0. This finding provides an important experimental constraint on theoretical efforts that explore this and complementary six-nucleon systems, such as the solar ^{3}He(^{3}He,2p)α reaction.

9.
Phys Rev Lett ; 118(9): 095002, 2017 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-28306316

RESUMEN

The deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)OPCOB80030-401810.1016/S0030-4018(96)00325-2] using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes [D. T. Casey et al., Phys. Rev. Lett. 108, 075002 (2012)PRLTAO0031-900710.1103/PhysRevLett.108.075002], are not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions.

11.
Phys Rev Lett ; 117(2): 025001, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27447511

RESUMEN

A record fuel hot-spot pressure P_{hs}=56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, 011201(R) (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.

12.
Phys Rev Lett ; 111(23): 235003, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24476281

RESUMEN

Monoenergetic-proton radiographs of laser-generated, high-Mach-number plasma jets colliding at various angles shed light on the structures and dynamics of these collisions. The observations compare favorably with results from 2D hydrodynamic simulations of multistream plasma jets, and also with results from an analytic treatment of electron flow and magnetic field advection. In collisions of two noncollinear jets, the observed flow structure is similar to the analytic model's prediction of a characteristic feature with a narrow structure pointing in one direction and a much thicker one pointing in the opposite direction. Spontaneous magnetic fields, largely azimuthal around the colliding jets and generated by the well-known ∇T(e)×∇n(e) Biermann battery effect near the periphery of the laser spots, are demonstrated to be "frozen in" the plasma (due to high magnetic Reynolds number Re(M)∼5×10(4)) and advected along the jet streamlines of the electron flow. These studies provide novel insight into the interactions and dynamics of colliding plasma jets.

13.
Phys Rev Lett ; 111(5): 052501, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23952390

RESUMEN

Neutron time-of-flight spectra from inertial confinement fusion experiments with tritium-filled targets have been measured at the National Ignition Facility. These spectra represent a significant improvement in energy resolution and statistics over previous measurements, and afford the first definitive observation of a peak resulting from sequential decay through the ground state of (5)He at low reaction energies E(c.m.) 100

14.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37862497

RESUMEN

Neutrons generated in Inertial Confinement Fusion (ICF) experiments provide valuable information to interpret the conditions reached in the plasma. The neutron time-of-flight (nToF) technique is well suited for measuring the neutron energy spectrum due to the short time (100 ps) over which neutrons are typically emitted in ICF experiments. By locating detectors 10s of meters from the source, the neutron energy spectrum can be measured to high precision. We present a contextual review of the current state of the art in nToF detectors at ICF facilities in the United States, outlining the physics that can be measured, the detector technologies currently deployed and analysis techniques used.

15.
Phys Rev E ; 108(3-2): 035201, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37849093

RESUMEN

The ion velocity distribution functions of thermonuclear plasmas generated by spherical laser direct drive implosions are studied using deuterium-tritium (DT) and deuterium-deuterium (DD) fusion neutron energy spectrum measurements. A hydrodynamic Maxwellian plasma model accurately describes measurements made from lower temperature (<10 keV), hydrodynamiclike plasmas, but is insufficient to describe measurements made from higher temperature more kineticlike plasmas. The high temperature measurements are more consistent with Vlasov-Fokker-Planck (VFP) simulation results which predict the presence of a bimodal plasma ion velocity distribution near peak neutron production. These measurements provide direct experimental evidence of non-Maxwellian ion velocity distributions in spherical shock driven implosions and provide useful data for benchmarking kinetic VFP simulations.

16.
Phys Rev Lett ; 108(21): 215005, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-23003274

RESUMEN

The National Ignition Facility has been used to compress deuterium-tritium to an average areal density of ~1.0±0.1 g cm(-2), which is 67% of the ignition requirement. These conditions were obtained using 192 laser beams with total energy of 1-1.6 MJ and peak power up to 420 TW to create a hohlraum drive with a shaped power profile, peaking at a soft x-ray radiation temperature of 275-300 eV. This pulse delivered a series of shocks that compressed a capsule containing cryogenic deuterium-tritium to a radius of 25-35 µm. Neutron images of the implosion were used to estimate a fuel density of 500-800 g cm(-3).

17.
Phys Rev E ; 105(5-2): 055205, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35706215

RESUMEN

The apparent ion temperature and mean velocity of the dense deuterium tritium fuel layer of an inertial confinement fusion target near peak compression have been measured using backscatter neutron spectroscopy. The average isotropic residual kinetic energy of the dense deuterium tritium fuel is estimated using the mean velocity measurement to be ∼103 J across an ensemble of experiments. The apparent ion-temperature measurements from high-implosion velocity experiments are larger than expected from radiation-hydrodynamic simulations and are consistent with enhanced levels of shell decompression. These results suggest that high-mode instabilities may saturate the scaling of implosion performance with the implosion velocity for laser-direct-drive implosions.

18.
Rev Sci Instrum ; 93(9): 093522, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182446

RESUMEN

A new neutron time-of-flight (nTOF) detector for deuterium-deuterium (DD)-fusion yield and ion-temperature measurements was designed, installed, and calibrated for the OMEGA Laser Facility. This detector provides an additional line of sight for DD neutron yield and ion-temperature measurements for yields exceeding 1 × 1010 with higher precision than existing detectors. The nTOF detector consists of a 90-mm-diam, 20-mm-thick BC-422 scintillator and a gated Photek photomultiplier tube (PMT240). The PMT collects scintillating light through the 20-mm side of the scintillator without the use of a light guide. There is no lead shielding from hard x rays in order to allow the x-ray instrument response function of the detector to be measured easily. Instead, hard x-ray signals generated in implosion experiments are gated out by the PMT. The design provides a place for glass neutral-density filters between the scintillator and the PMT to avoid PMT saturation at high yields. The nTOF detector is installed in the OMEGA Target Bay along the P8A sub-port line of sight at a distance of 5.3 m from the target chamber center. In addition to DD measurements, the same detector can be used to measure the neutron yield and ion temperature from deuterium-tritium (DT) implosion targets in the 5 × 1010 to 2 × 1012 yield range. The design details and the calibration results of this nTOF detector for both D2 and DT implosions on OMEGA will be presented.

19.
Rev Sci Instrum ; 93(12): 123513, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586930

RESUMEN

Low- and mid-mode perturbations are possible candidates for performance limitations in cryogenic direct-drive implosions on the OMEGA laser at the Laboratory of Laser Energetics. Simulations with a 3D hydrocode demonstrated that hotspot imagers do not show evidence of the shell breakup in the dense fuel. However, these same simulations revealed that the low- and mid-mode perturbations in the dense fuel could be diagnosed more easily in the post-stagnation phase of the implosion by analyzing the peak in the x-ray emission limb at the coronal-fuel interface than before or at the stagnation phase. In experiments, the asymmetries are inferred from gated images of the x-ray emission of the implosion by using a 16-pinhole array imager filtered to record x-ray energies >800 eV and an x-ray framing camera with 40-ps time integration and 20-µm spatial resolution. A modal analysis is applied to the spatial distribution of the x-ray emission from deuterium and tritium cryogenic implosions on OMEGA recorded after the bang time to diagnose the low- and mid-mode asymmetries, and to study the effect that the beam-to-target ratio (Rb/Rt) has on the shell integrity.

20.
Rev Sci Instrum ; 93(10): 103505, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36319371

RESUMEN

Areal density is one of the key parameters that determines the confinement time in inertial confinement fusion experiments, and low-mode asymmetries in the compressed fuel are detrimental to the implosion performance. The energy spectra from the scattering of the primary deuterium-tritium (DT) neutrons off the compressed cold fuel assembly are used to investigate low-mode nonuniformities in direct-drive cryogenic DT implosions at the Omega Laser Facility. For spherically symmetric implosions, the shape of the energy spectrum is primarily determined by the elastic and inelastic scattering cross sections for both neutron-deuterium and neutron-tritium kinematic interactions. Two highly collimated lines of sight, which are positioned at nearly orthogonal locations around the OMEGA target chamber, record the neutron time-of-flight signal in the current mode. An evolutionary algorithm is being used to extract a model-independent energy spectrum of the scattered neutrons from the experimental neutron time-of-flight data and is used to infer the modal spatial variations (l = 1) in the areal density. Experimental observations of the low-mode variations of the cold-fuel assembly (ρL0 + ρL1) show good agreement with a recently developed model, indicating a departure from the spherical symmetry of the compressed DT fuel assembly. Another key signature that has been observed in the presence of a low-mode variation is the broadening of the kinematic end-point due to the anisotropy of the dense fuel conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA