Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
bioRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38405915

RESUMEN

In neurons of the mammalian central nervous system (CNS), axonal mitochondria are thought to be indispensable for supplying ATP during energy-consuming processes such as neurotransmitter release. Here, we demonstrate using multiple, independent, in vitro and in vivo approaches that the majority (~80-90%) of axonal mitochondria in cortical pyramidal neurons (CPNs), lack mitochondrial DNA (mtDNA). Using dynamic, optical imaging analysis of genetically encoded sensors for mitochondrial matrix ATP and pH, we demonstrate that in axons of CPNs, but not in their dendrites, mitochondrial complex V (ATP synthase) functions in a reverse way, consuming ATP and protruding H+ out of the matrix to maintain mitochondrial membrane potential. Our results demonstrate that in mammalian CPNs, axonal mitochondria do not play a major role in ATP supply, despite playing other functions critical to regulating neurotransmission such as Ca2+ buffering.

2.
Nat Commun ; 15(1): 2142, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459070

RESUMEN

Neuronal mitochondria play important roles beyond ATP generation, including Ca2+ uptake, and therefore have instructive roles in synaptic function and neuronal response properties. Mitochondrial morphology differs significantly between the axon and dendrites of a given neuronal subtype, but in CA1 pyramidal neurons (PNs) of the hippocampus, mitochondria within the dendritic arbor also display a remarkable degree of subcellular, layer-specific compartmentalization. In the dendrites of these neurons, mitochondria morphology ranges from highly fused and elongated in the apical tuft, to more fragmented in the apical oblique and basal dendritic compartments, and thus occupy a smaller fraction of dendritic volume than in the apical tuft. However, the molecular mechanisms underlying this striking degree of subcellular compartmentalization of mitochondria morphology are unknown, precluding the assessment of its impact on neuronal function. Here, we demonstrate that this compartment-specific morphology of dendritic mitochondria requires activity-dependent, Ca2+ and Camkk2-dependent activation of AMPK and its ability to phosphorylate two direct effectors: the pro-fission Drp1 receptor Mff and the recently identified anti-fusion, Opa1-inhibiting protein, Mtfr1l. Our study uncovers a signaling pathway underlying the subcellular compartmentalization of mitochondrial morphology in dendrites of neurons in vivo through spatially precise and activity-dependent regulation of mitochondria fission/fusion balance.


Asunto(s)
Neuronas , Células Piramidales , Neuronas/metabolismo , Células Piramidales/fisiología , Hipocampo , Axones/metabolismo , Mitocondrias/metabolismo , Dendritas/fisiología
3.
Front Aging Neurosci ; 14: 876816, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547624

RESUMEN

Emerging evidence suggests that patients with Alzheimer's disease (AD) may show accelerated sarcopenia phenotypes. To investigate whether pathological changes associated with neuronal death and cognitive dysfunction also occur in peripheral motor neurons and muscle as a function of age, we used the triple transgenic mouse model of AD (3xTgAD mice) that carries transgenes for mutant forms of APP, Tau, and presenilin proteins that are associated with AD pathology. We measured changes in motor neurons and skeletal muscle function and metabolism in young (2 to 4 month) female control and 3xTgAD mice and in older (18-20 month) control and 3xTgAD female mice. In older 3xTgAD mice, we observed a number of sarcopenia-related phenotypes, including significantly fragmented and denervated neuromuscular junctions (NMJs) associated with a 17% reduction in sciatic nerve induced vs. direct muscle stimulation induced contractile force production, and a 30% decrease in gastrocnemius muscle mass. On the contrary, none of these outcomes were found in young 3xTgAD mice. We also measured an accumulation of amyloid-ß (Aß) in both skeletal muscle and neuronal tissue in old 3xTgAD mice that may potentially contribute to muscle atrophy and NMJ disruption in the older 3xTgAD mice. Furthermore, the TGF-ß mediated atrophy signaling pathway is activated in old 3xTgAD mice and is a potential contributing factor in the muscle atrophy that occurs in this group. Perhaps surprisingly, mitochondrial oxygen consumption and reactive oxygen species (ROS) production are not elevated in skeletal muscle from old 3xTgAD mice. Together, these results provide new insights into the effect of AD pathological mechanisms on peripheral changes in skeletal muscle.

4.
Aging Cell ; 21(3): e13569, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35199907

RESUMEN

Age-related muscle atrophy and weakness, or sarcopenia, are significant contributors to compromised health and quality of life in the elderly. While the mechanisms driving this pathology are not fully defined, reactive oxygen species, neuromuscular junction (NMJ) disruption, and loss of innervation are important risk factors. The goal of this study is to determine the impact of mitochondrial hydrogen peroxide on neurogenic atrophy and contractile dysfunction. Mice with muscle-specific overexpression of the mitochondrial H2 O2  scavenger peroxiredoxin3 (mPRDX3) were crossed to Sod1KO mice, an established mouse model of sarcopenia, to determine whether reduced mitochondrial H2 O2 can prevent or delay the redox-dependent sarcopenia. Basal rates of H2 O2  generation were elevated in isolated muscle mitochondria from Sod1KO, but normalized by mPRDX3 overexpression. The mPRDX3 overexpression prevented the declines in maximum mitochondrial oxygen consumption rate and calcium retention capacity in Sod1KO. Muscle atrophy in Sod1KO was mitigated by ~20% by mPRDX3 overexpression, which was associated with an increase in myofiber cross-sectional area. With direct muscle stimulation, maximum isometric specific force was reduced by ~20% in Sod1KO mice, and mPRDX3 overexpression preserved specific force at wild-type levels. The force deficit with nerve stimulation was exacerbated in Sod1KO compared to direct muscle stimulation, suggesting NMJ disruption in Sod1KO. Notably, this defect was not resolved by overexpression of mPRDX3. Our findings demonstrate that muscle-specific PRDX3 overexpression reduces mitochondrial H2 O2  generation, improves mitochondrial function, and mitigates loss of muscle quantity and quality, despite persisting NMJ impairment in a murine model of redox-dependent sarcopenia.


Asunto(s)
Sarcopenia , Envejecimiento , Animales , Modelos Animales de Enfermedad , Peróxido de Hidrógeno/metabolismo , Ratones , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Estrés Oxidativo , Peroxiredoxina III/metabolismo , Calidad de Vida , Sarcopenia/patología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
5.
Sci Rep ; 10(1): 13968, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811851

RESUMEN

Defects in neuromuscular innervation contribute significantly to the age-related decline in muscle mass and function (sarcopenia). Our previous studies demonstrated that denervation induces muscle mitochondrial hydroperoxide production (H2O2 and lipid hydroperoxides (LOOHs)). Here we define the relative contribution of mitochondrial electron transport chain (ETC) derived H2O2 versus cytosolic phospholipase A2 (cPLA2) derived LOOHs in neurogenic muscle atrophy. We show that denervation increases muscle cPLA2 protein content, activity, and metabolites downstream of cPLA2 including LOOHs. Increased scavenging of mitochondrial H2O2 does not protect against denervation atrophy, suggesting ETC generated H2O2 is not a critical player. In contrast, inhibition of cPLA2 in vivo mitigates LOOH production and muscle atrophy and maintains individual muscle fiber size while decreasing oxidative damage. Overall, we show that loss of innervation in several muscle atrophy models including aging induces generation of LOOHs produced by arachidonic acid metabolism in the cPLA2 pathway contributing to loss of muscle mass.


Asunto(s)
Peróxidos Lipídicos/metabolismo , Fosfolipasas A2/metabolismo , Sarcopenia/terapia , Animales , Citosol/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Peróxido de Hidrógeno/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Estrés Oxidativo/efectos de los fármacos , Sarcopenia/metabolismo
6.
J Cachexia Sarcopenia Muscle ; 11(6): 1688-1704, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32918528

RESUMEN

BACKGROUND: Cancer is associated with muscle atrophy (cancer cachexia) that is linked to up to 40% of cancer-related deaths. Oxidative stress is a critical player in the induction and progression of age-related loss of muscle mass and weakness (sarcopenia); however, the role of oxidative stress in cancer cachexia has not been defined. The purpose of this study was to examine if elevated oxidative stress exacerbates cancer cachexia. METHODS: Cu/Zn superoxide dismutase knockout (Sod1KO) mice were used as an established mouse model of elevated oxidative stress. Cancer cachexia was induced by injection of one million Lewis lung carcinoma (LLC) cells or phosphate-buffered saline (saline) into the hind flank of female wild-type mice or Sod1KO mice at approximately 4 months of age. The tumour developed for 3 weeks. Muscle mass, contractile function, neuromuscular junction (NMJ) fragmentation, metabolic proteins, mitochondrial function, and motor neuron function were measured in wild-type and Sod1KO saline and tumour-bearing mice. Data were analysed by two-way ANOVA with Tukey-Kramer post hoc test when significant F ratios were determined and α was set at 0.05. Unless otherwise noted, results in abstract are mean ±SEM. RESULTS: Muscle mass and cross-sectional area were significantly reduced, in tumour-bearing mice. Metabolic enzymes were dysregulated in Sod1KO mice and cancer exacerbated this phenotype. NMJ fragmentation was exacerbated in tumour-bearing Sod1KO mice. Myofibrillar protein degradation increased in tumour-bearing wild-type mice (wild-type saline, 0.00847 ± 0.00205; wildtype LLC, 0.0211 ± 0.00184) and tumour-bearing Sod1KO mice (Sod1KO saline, 0.0180 ± 0.00118; Sod1KO LLC, 0.0490 ± 0.00132). Muscle mitochondrial oxygen consumption was reduced in tumour-bearing mice compared with saline-injected wild-type mice. Mitochondrial protein degradation increased in tumour-bearing wild-type mice (wild-type saline, 0.0204 ± 0.00159; wild-type LLC, 0.167 ± 0.00157) and tumour-bearing Sod1KO mice (Sod1KO saline, 0.0231 ± 0.00108; Sod1 KO LLC, 0.0645 ± 0.000631). Sciatic nerve conduction velocity was decreased in tumour-bearing wild-type mice (wild-type saline, 38.2 ± 0.861; wild-type LLC, 28.8 ± 0.772). Three out of eleven of the tumour-bearing Sod1KO mice did not survive the 3-week period following tumour implantation. CONCLUSIONS: Oxidative stress does not exacerbate cancer-induced muscle loss; however, cancer cachexia may accelerate NMJ disruption.


Asunto(s)
Caquexia , Carcinoma Pulmonar de Lewis , Animales , Caquexia/etiología , Carcinoma Pulmonar de Lewis/complicaciones , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Noqueados , Estrés Oxidativo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
7.
Redox Biol ; 26: 101308, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31470261

RESUMEN

Mitochondrial dysfunction, reactive oxygen species (ROS) and oxidative damage have been implicated to play a causative role in age-related skeletal muscle atrophy and weakness (i.e. sarcopenia). Mice lacking the superoxide scavenger CuZnSOD (Sod1-/-) exhibit high levels of oxygen-derived radicals and oxidative damage, associated with neuronal and muscular phenotypes consistent with sarcopenia. We used magnetic resonance imaging (MRI) technology combined with immunospin-trapping (IST) to measure in vivo free radical levels in skeletal muscle from wildtype, Sod1-/- and SynTgSod1-/- mice, a mouse model generated using targeted expression of the human Sod1 transgene specifically in neuronal tissues to determine the impact of motor neuron degeneration in muscle atrophy. By combining the spin trap DMPO (5,5-dimethyl-1-pyrroline N-oxide) and molecular MRI (mMRI), we monitored the level of free radicals in mouse hindlimb muscle. The level of membrane-bound macromolecular radicals in the quadriceps muscle was elevated by ~3-fold in Sod1-/- mice, but normalized to wildtype levels in SynTgSod1-/- rescue mice. Skeletal muscle mass was reduced by ~25-30% in Sod1-/- mice, but fully reversed in muscle from SynTgSod1-/- mice. Using perfusion MRI we also measured the dynamics of blood flow within mouse hindlimb. Relative muscle blood flow in Sod1-/- is decreased to ~50% of wildtype and remained low in the SynTgSod1-/- mice. Our findings are significant in that we have shown for the first time that in vivo free radical production in skeletal muscle is directly correlated to muscle atrophy in an experimental model of oxidative stress. Neuron-specific expression of CuZnSOD reverses the in vivo free radical production in skeletal muscle in the Sod1-/- mouse model and prevents muscle atrophy. These results further support the feasibility of using in vivo assessments of redox status in the progression of a pathological process such as sarcopenia. This approach can also be valuable for evaluating responses to pharmacologic interventions.


Asunto(s)
Radicales Libres/metabolismo , Imagen por Resonancia Magnética , Imagen Molecular , Atrofia Muscular/diagnóstico por imagen , Atrofia Muscular/metabolismo , Estrés Oxidativo , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/etiología , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA