Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nano Lett ; 24(22): 6529-6537, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38789104

RESUMEN

Contact resistance is a multifaceted challenge faced by the 2D materials community. Large Schottky barrier heights and gap-state pinning are active obstacles that require an integrated approach to achieve the development of high-performance electronic devices based on 2D materials. In this work, we present semiconducting PtSe2 field effect transistors with all-van-der-Waals electrode and dielectric interfaces. We use graphite contacts, which enable high ION/IOFF ratios up to 109 with currents above 100 µA µm-1 and mobilities of 50 cm2 V-1 s-1 at room temperature and over 400 cm2 V-1 s-1 at 10 K. The devices exhibit high stability with a maximum hysteresis width below 36 mV nm-1. The contact resistance at the graphite-PtSe2 interface is found to be below 700 Ω µm. Our results present PtSe2 as a promising candidate for the realization of high-performance 2D circuits built solely with 2D materials.

2.
Faraday Discuss ; 242(0): 160-173, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36178317

RESUMEN

Nanoparticles with diameters in the range of a few nanometers, consisting of gold and vanadium oxide, are synthesized by sequential doping of cold helium droplets in a molecular beam apparatus and deposited on solid carbon substrates. After surface deposition, the samples are removed and various measurement techniques are applied to characterize the created particles: scanning transmission electron microscopy (STEM) at atomic resolution, temperature dependent STEM and TEM up to 650 °C, energy-dispersive X-ray spectroscopy (EDXS) and electron energy loss spectroscopy (EELS). In previous experiments we have shown that pure V2O5 nanoparticles can be generated by sublimation from the bulk and deposited without affecting their original stoichiometry. Interestingly, our follow-up attempts to create Au@V2O5 core@shell particles do not yield the expected encapsulated structure. Instead, Janus particles of Au and V2O5 with diameters between 10 and 20 nm are identified after deposition. At the interface of the Au and the V2O5 parts we observe an epitaxial-like growth of the vanadium oxide next to the Au structure. To test the temperature stability of these Janus-type particles, the samples are heated in situ during the STEM measurements from room temperature up to 650 °C, where a reduction from V2O5 to V2O3 is followed by a restructuring of the gold atoms to form a Wulff-shaped cluster layer. The temperature dependent dynamic interplay between gold and vanadium oxide in structures of only a few nanometer size is the central topic of this contribution to the Faraday Discussion.

3.
Nano Lett ; 20(9): 6444-6451, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32794711

RESUMEN

Oxygen vacancies are known to play a crucial role in tuning the physical properties and technological applications of titanium dioxide TiO2. Over the last decades, defects in substoichiometric TiO2 have been commonly associated with the formation of TinO2n-x Magnéli phases, which are extended planar defects originating from crystallographic shear planes. By combining advanced transmission electron microscopy techniques, electron energy-loss spectroscopy and atomistic simulations, we reach new understanding of the oxygen vacancy induced structural modulations in anatase, ruling out the earlier shear-plane model. Structural modulations are instead shown to be due to the formation of oxygen vacancy superstructures that extend periodically inside the films, preserving the crystalline order of anatase. Elucidating the structure of oxygen defects in anatase is a crucial step for improving the functionalities of such material system and to engineer devices with targeted properties.

4.
Phys Chem Chem Phys ; 21(37): 21104-21108, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31528952

RESUMEN

Vanadium oxide clusters with a mean diameter below 10 nm are investigated by high resolution Scanning Transmission Electron Microscopy (STEM), Electron Energy Loss Spectroscopy (EELS) and UV-vis absorption spectroscopy. The clusters are synthesised by sublimation from bulk vanadium(v) oxide, in combination with a pick-up by superfluid helium droplets. The latter act as reaction chambers which enable cluster growth under fully inert and solvent-free conditions. High-resolution STEM images of deposited vanadium oxide particles allowing for the determination of lattice constants, clearly indicate a dominating presence of V2O5. This finding is further supported by UV-vis absorption spectra of nanoparticles after deposition on fused silica substrates, which indicates that the oxidation state of the material is preserved over the entire process. From the results of the UV-vis measurement, the band gap of the nanosized V2O5 could be determined to be 3.3 eV. The synthesis approach provides a route to clean V2O5 clusters as it does not involve any surfactant or solvents, which is crucial for an unbiased measurement of intrinsic catalyst properties.

5.
Phys Chem Chem Phys ; 19(14): 9402-9408, 2017 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-28327747

RESUMEN

We present time-resolved transmission electron microscopy studies of the degradation of Au, Ag, Cu and Ni nanowires deposited on a heated support. The wires are grown under fully inert conditions in superfluid helium droplets and deposited onto amorphous carbon. The inherent stability of these pristine metal nanowires with diameters below 10 nm is investigated in the absence of any stabilizers, templates or solvents. The phenomenon of Rayleigh-breakup, a consequence of diffusion processes along the wire surfaces, is analysed in situ via scans over time and support temperature. Our experimental efforts are combined with simulations based on a novel model featuring a cellular automaton to emulate surface diffusion. Based on this model, correlations between the material parameters and actual breakup behaviour are studied.

6.
Phys Chem Chem Phys ; 18(4): 3359, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26728840

RESUMEN

Correction for 'The impact of doping rates on the morphologies of silver and gold nanowires grown in helium nanodroplets' by Alexander Volk et al., Phys. Chem. Chem. Phys., 2016, DOI: 10.1039/c5cp06248a.

7.
Phys Chem Chem Phys ; 18(3): 1451-9, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26603482

RESUMEN

Silver and gold nanowires are grown within superfluid helium nanodroplets and investigated by high resolution electron microscopy after surface deposition. The wire morphologies depend on the rate of metal atom doping in the pickup sequence. While high doping rates result in a polycrystalline face-centered cubic nanowire structure, at lower doping rates the initial fivefold-symmetry seems to be preserved. An explanation for this observation is given by computer simulations, which allow the derivation of timescales for the nanowire growth process inside helium nanodroplets.

8.
Phys Chem Chem Phys ; 17(38): 24570-5, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26367114

RESUMEN

Ag nanowires with diameters below 6 nm are grown within vortex containing superfluid helium nanodroplets and deposited onto a heatable substrate at cryogenic temperatures. The experimental setup allows an unbiased investigation of the inherent stability of pristine silver nanowires, which is virtually impossible with other methods due to chemical processes or templates involved in standard production routes. We demonstrate by experiment and by adaption of a theoretical model that initially continuous wires disintegrate into chains of spheres. This phenomenon is well described by a Rayleigh-like breakup mechanism when the substrate is heated to room temperature. Our findings clarify the recent discussions on the cause of the observed segmented patterns, where a breakup during deposition [Gomez et al., Phys. Rev. Lett., 2012, 108, 155302] or mechanisms intrinsic to the helium droplet mediated growth process [Spence et al., Phys. Chem. Chem. Phys., 2014, 16, 6903] have been proposed. The experimental setup confirms the validity of previous suggestions derived from bulk superfluid helium experiments [Gordon et al., Phys. Chem. Chem. Phys., 2014, 16, 25229] for the helium droplet system, and further allows a much more accurate determination of the breakup temperature.


Asunto(s)
Helio/química , Nanocables/química , Plata/química , Microscopía Electrónica de Transmisión , Temperatura
9.
J Chem Phys ; 143(13): 134201, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26450307

RESUMEN

Micrometer sized helium droplets provide an extraordinary environment for the growth of nanoparticles. The method promises great potential for the preparation of core-shell particles as well as one-dimensional nanostructures, which agglomerate along quantum vortices, without involving solvents, ligands, or additives. Using a new apparatus, which enables us to record mass spectra of heavy dopant clusters (>10(4) amu) and to produce samples for transmission electron microscopy simultaneously, we synthesize bare and bimetallic nanoparticles consisting of various materials (Au, Ni, Cr, and Ag). We present a systematical study of the growth process of clusters and nanoparticles inside the helium droplets, which can be described with a simple theoretical model.

10.
Nanoscale ; 16(31): 14722-14729, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38922329

RESUMEN

Electron-assisted oxidation of Co-Si-based focused electron beam induced deposition (FEBID) materials is shown to form a 2-4 nm metal oxide surface layer on top of an electrically insulating silicon oxide layer less than 10 nm thick. Differences between thermal and electron-induced oxidation on the resulting microstructure are illustrated.

11.
J Phys Chem C Nanomater Interfaces ; 128(7): 2967-2977, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38444783

RESUMEN

The investigation of precursor classes for the fabrication of nanostructures is of specific interest for maskless fabrication and direct nanoprinting. In this study, the differences in material composition depending on the employed process are illustrated for focused-ion-beam- and focused-electron-beam-induced deposition (FIBID/FEBID) and compared to the thermal decomposition in chemical vapor deposition (CVD). This article reports on specific differences in the deposit composition and microstructure when the (H3Si)2Fe(CO)4 precursor is converted into an inorganic material. Maximum metal/metalloid contents of up to 90 at. % are obtained in FIBID deposits and higher than 90 at. % in CVD films, while FEBID with the same precursor provides material containing less than 45 at. % total metal/metalloid content. Moreover, the Fe:Si ratio is retained well in FEBID and CVD processes, but FIBID using Ga+ ions liberates more than 50% of the initial Si provided by the precursor. This suggests that precursors for FIBID processes targeting binary materials should include multiple bonding such as bridging positions for nonmetals. In addition, an in situ method for investigations of supporting thermal effects of precursor fragmentation during the direct-writing processes is presented, and the applicability of the precursor for nanoscale 3D FEBID writing is demonstrated.

12.
Adv Mater ; : e2310668, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101291

RESUMEN

Strongly-correlated transition-metal oxides are widely known for their various exotic phenomena. This is exemplified by rare-earth nickelates such as LaNiO3, which possess intimate interconnections between their electronic, spin, and lattice degrees of freedom. Their properties can be further enhanced by pairing them in hybrid heterostructures, which can lead to hidden phases and emergent phenomena. An important example is the LaNiO3/LaTiO3 superlattice, where an interlayer electron transfer has been observed from LaTiO3 into LaNiO3 leading to a high-spin state. However, macroscopic emergence of magnetic order associated with this high-spin state has so far not been observed. Here, by using muon spin rotation, x-ray absorption, and resonant inelastic x-ray scattering, direct evidence of an emergent antiferromagnetic order with high magnon energy and exchange interactions at the LaNiO3/LaTiO3 interface is presented. As the magnetism is purely interfacial, a single LaNiO3/LaTiO3 interface can essentially behave as an atomically thin strongly-correlated quasi-2D antiferromagnet, potentially allowing its technological utilization in advanced spintronic devices. Furthermore, its strong quasi-2D magnetic correlations, orbitally-polarized planar ligand holes, and layered superlattice design make its electronic, magnetic, and lattice configurations resemble the precursor states of superconducting cuprates and nickelates, but with an S→1 spin state instead.

13.
Nanomaterials (Basel) ; 13(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37177090

RESUMEN

The charging of nanoporous carbon via electrodeposition of solid iodine from iodide-based electrolyte is an efficient and ecofriendly method to produce battery cathodes. Here, the interactions at the carbon/iodine interface from first contact with the aqueous electrolyte to the electrochemical polarization conditions in a hybrid cell are investigated by a combination of in situ and ex situ methods. EQCM investigations confirm the flushing out of water from the pores during iodine formation at the positive electrode. XPS of the carbon surface shows irreversible oxidation at the initial electrolyte immersion and to a larger extent during the first few charge/discharge cycles. This leads to the creation of functional groups at the surface while further reactive sites are consumed by iodine, causing a kind of passivation during a stable cycling regime. Two sources of carbon electrode structural modifications during iodine formation in the nanopores have been revealed by in situ Raman spectroscopy, (i) charge transfer and (ii) mechanical strain, both causing reversible changes and thus preventing performance deterioration during the long-term cycling of energy storage devices that use iodine-charged carbon electrodes.

14.
Nanomaterials (Basel) ; 12(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35407228

RESUMEN

The material composition and electrical properties of nanostructures obtained from focused electron beam-induced deposition (FEBID) using manganese and vanadium carbonyl precursors have been investigated. The composition of the FEBID deposits has been compared with thin films derived by the thermal decomposition of the same precursors in chemical vapor deposition (CVD). FEBID of V(CO)6 gives access to a material with a V/C ratio of 0.63-0.86, while in CVD a lower carbon content with V/C ratios of 1.1-1.3 is obtained. Microstructural characterization reveals for V-based materials derived from both deposition techniques crystallites of a cubic phase that can be associated with VC1-xOx. In addition, the electrical transport measurements of direct-write VC1-xOx show moderate resistivity values of 0.8-1.2 × 103 µΩ·cm, a negligible influence of contact resistances and signatures of a granular metal in the temperature-dependent conductivity. Mn-based deposits obtained from Mn2(CO)10 contain ~40 at% Mn for FEBID and a slightly higher metal percentage for CVD. Exclusively insulating material has been observed in FEBID deposits as deduced from electrical conductivity measurements. In addition, strong tendencies for postgrowth oxidation have to be considered.

15.
J Phys Chem C Nanomater Interfaces ; 126(8): 4037-4047, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35273676

RESUMEN

Electrochemical dealloying has become a standard technique to produce nanoporous network structures of various noble metals, exploiting the selective dissolution of one component from an alloy. While achieving nanoporosity during dealloying has been intensively studied for the prime example of nanoporous Au from a AgAu alloy, dealloying from other noble-metal alloys has been rarely investigated in the scientific literature. Here, we study the evolution of nanoporosity in the electrochemical dealloying process for both CoPd and AgAu alloys using a combination of in situ grazing-incidence small-angle X-ray scattering (GISAXS), kinetic Monte Carlo (KMC) simulations, and scanning transmission electron microscopy (STEM). When comparing dealloying kinetics, we find a more rapid progression of the dealloying front for CoPd and also a considerably slower coarsening of the nanoporous structure for Pd in relation to Au. We argue that our findings are natural consequences of the effectively higher dealloying potential and the higher interatomic binding energy for the CoPd alloy. Our results corroborate the understanding of electrochemical dealloying on the basis of two rate equations for dissolution and surface diffusion and suggest the general applicability of this dealloying mechanism to binary alloys. The present study contributes to the future tailoring of structural size in nanoporous metals for improved chemical surface activity.

16.
Ultramicroscopy ; 234: 113477, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35123207

RESUMEN

High-resolution STEM-EELS provides information about the composition of crystalline materials at the atomic scale, though a reliable quantitative chemical analysis is often hampered by zone axis conditions, where neighbouring atomic column intensities contribute to the signal at the probe position. In this work, we present a procedure to determine the concentration of two elements within equivalent atomic columns from EELS elemental maps - in our case barium and lanthanum within the A-sites of Ba1.1La1.9Fe2O7, a second order Ruddlesden-Popper phase. We took advantage of the large changes in the elemental distribution from column to column and introduced a technique, which substitutes inelastic scattering cross sections during the quantification step by using parameters obtained from the actual experiment. We considered channelling / de-channelling effects via inelastic multislice simulations and were thereby able to count occupancies in each atomic column. The EELS quantification results were then used as prior information during the Rietveld refinement in XRD measurements in order to differentiate between barium and lanthanum.

17.
Adv Sci (Weinh) ; 9(16): e2105114, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35384406

RESUMEN

The formation and the evolution of electronic metallic states localized at the surface, commonly termed 2D electron gas (2DEG), represents a peculiar phenomenon occurring at the surface and interface of many transition metal oxides (TMO). Among TMO, titanium dioxide (TiO2 ), particularly in its anatase polymorph, stands as a prototypical system for the development of novel applications related to renewable energy, devices and sensors, where understanding the carrier dynamics is of utmost importance. In this study, angle-resolved photo-electron spectroscopy (ARPES) and X-ray absorption spectroscopy (XAS) are used, supported by density functional theory (DFT), to follow the formation and the evolution of the 2DEG in TiO2 thin films. Unlike other TMO systems, it is revealed that, once the anatase fingerprint is present, the 2DEG in TiO2 is robust and stable down to a single-unit-cell, and that the electron filling of the 2DEG increases with thickness and eventually saturates. These results prove that no critical thickness triggers the occurrence of the 2DEG in anatase TiO2 and give insight in formation mechanism of electronic states at the surface of TMO.

18.
ACS Appl Mater Interfaces ; 13(46): 55666-55675, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34758616

RESUMEN

The properties of half-metallic manganite thin films depend on the composition and structure in the atomic scale, and consequently, their potential functional behavior can only be based on fine structure characterization. By combining advanced transmission electron microscopy, electron energy loss spectroscopy, density functional theory calculations, and multislice image simulations, we obtained evidence of a 7 nm-thick interface layer in La0.7Sr0.3MnO3 (LSMO) thin films, compatible with the formation of well-known dead layers in manganites, with an elongated out-of-plane lattice parameter and structural and electronic properties well distinguished from the bulk of the film. We observed, for the first time, a structural shift of Mn ions coupled with oxygen vacancies and a reduced Mn valence state within such layer. Understanding the correlation between oxygen vacancies, the Mn oxidation state, and Mn-ion displacements is a prerequisite to engineer the magnetotransport properties of LSMO thin films.

19.
ACS Appl Electron Mater ; 3(10): 4498-4508, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34723187

RESUMEN

The interaction of oxygen vacancies and ferroelectric domain walls is of great scientific interest because it leads to different domain-structure behaviors. Here, we use high-resolution scanning transmission electron microscopy to study the ferroelectric domain structure and oxygen-vacancy ordering in a compressively strained Bi0.9Ca0.1FeO3-δ thin film. It was found that atomic plates, in which agglomerated oxygen vacancies are ordered, appear without any periodicity between the plates in out-of-plane and in-plane orientation. The oxygen non-stoichiometry with δ ≈ 1 in FeO2-δ planes is identical in both orientations and shows no preference. Within the plates, the oxygen vacancies form 1D channels in a pseudocubic [010] direction with a high number of vacancies that alternate with oxygen columns with few vacancies. These plates of oxygen vacancies always coincide with charged domain walls in a tail-to-tail configuration. Defects such as ordered oxygen vacancies are thereby known to lead to a pinning effect of the ferroelectric domain walls (causing application-critical aspects, such as fatigue mechanisms and countering of retention failure) and to have a critical influence on the domain-wall conductivity. Thus, intentional oxygen vacancy defect engineering could be useful for the design of multiferroic devices with advanced functionality.

20.
ACS Appl Mater Interfaces ; 12(42): 47556-47563, 2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-32985188

RESUMEN

The study of ionic materials on nanometer scale is of great relevance for efficient miniaturized devices for energy applications. The epitaxial growth of thin films can be a valid route to tune the properties of the materials and thus obtain new degrees of freedom in materials design. High crystal quality SmxCe1-xO2-δ films are here reported at a high doping level up to x = 0.4, thanks to the good lattice matching with the (110) oriented NdGaO3 substrate. X-ray diffraction and transmission electron microscopy demonstrate the ordered structural quality and absence of Sm segregation at the macroscopic and atomic level, respectively. Therefore, in epitaxial thin films, the homogeneous doping can be obtained even with the high dopant content not always approachable in bulk form, getting even an improvement of the structural properties. In situ spectroscopic measurements by X-ray photoemission and X-ray absorption show the O 2p band shift toward the Fermi level, which can favor the oxygen exchange and vacancy formation on the surface when the Sm doping is increased to x = 0.4. X-ray absorption spectroscopy also confirms the absence of ordered oxygen vacancy clusters and further reveals that the 5d eg and t2g states are well separated by the crystal field in the undistorted local structure even in the case of a high doping level up to x = 0.4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA