Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897768

RESUMEN

The extracellular matrix (ECM) is an important regulator of excitability and synaptic plasticity, especially in its highly condensed form, the perineuronal nets (PNN). In patients with drug-resistant mesial temporal lobe epilepsy (MTLE), hippocampal sclerosis type 1 (HS1) is the most common histopathological finding. This study aimed to evaluate the ECM profile of HS1 in surgically treated drug-resistant patients with MTLE in correlation to clinical findings. Hippocampal sections were immunohistochemically stained for aggrecan, neurocan, versican, chondroitin-sulfate (CS56), fibronectin, Wisteria floribunda agglutinin (WFA), a nuclear neuronal marker (NeuN), parvalbumin (PV), and glial-fibrillary-acidic-protein (GFAP). In HS1, besides the reduced number of neurons and astrogliosis, we found a significantly changed expression pattern of versican, neurocan, aggrecan, WFA-specific glycosylation, and a reduced number of PNNs. Patients with a lower number of epileptic episodes had a less intense diffuse WFA staining in Cornu Ammonis (CA) fields. Our findings suggest that PNN reduction, changed ECM protein, and glycosylation expression pattern in HS1 might be involved in the pathogenesis and persistence of drug-resistant MTLE by contributing to the increase of CA pyramidal neurons' excitability. This research corroborates the validity of ECM molecules and their modulators as a potential target for the development of new therapeutic approaches to drug-resistant epilepsy.


Asunto(s)
Gliosis , Neurocano , Agrecanos/metabolismo , Matriz Extracelular/metabolismo , Gliosis/metabolismo , Hipocampo/metabolismo , Humanos , Neurocano/metabolismo , Esclerosis/metabolismo , Versicanos/metabolismo
2.
Cereb Cortex ; 29(11): 4709-4724, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30722016

RESUMEN

To uncover the ontogenesis of the human indusium griseum (IG), 28 post-mortem fetal human brains, 12-40 postconceptional weeks (PCW) of age, and 4 adult brains were analyzed immunohistochemically and compared with post-mortem magnetic resonance imaging (MRI) of 28 fetal brains (14-41 PCW). The morphogenesis of the IG occurred between 12 and 15 PCW, transforming the bilateral IG primordia into a ribbon-like cortical lamina. The histogenetic transition of sub-laminated zones into the three-layered cortical organization occurred between 15 and 35 PCW, concomitantly with rapid cell differentiation that occurred from 18 to 28 PCW and the elaboration of neuronal connectivity during the entire second half of gestation. The increasing number of total cells and neurons in the IG at 25 and 35 PCW confirmed its continued differentiation throughout this period. High-field 3.0 T post-mortem MRI enabled visualization of the IG at the mid-fetal stage using T2-weighted sequences. In conclusion, the IG had a distinct histogenetic differentiation pattern than that of the neighboring intralimbic areas of the same ontogenetic origin, and did not show any signs of regression during the fetal period or postnatally, implying a functional role of the IG in the adult brain, which is yet to be disclosed.


Asunto(s)
Lóbulo Límbico/citología , Lóbulo Límbico/embriología , Neuronas/citología , Neuronas/fisiología , Recuento de Células , Diferenciación Celular , Femenino , Técnicas Histológicas , Humanos , Imagen por Resonancia Magnética , Masculino
3.
Proc Biol Sci ; 284(1861)2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28855363

RESUMEN

The cortex of primates is relatively expanded compared with many other mammals, yet little is known about what developmental processes account for the expansion of cortical subtype numbers in primates, including humans. We asked whether GABAergic and pyramidal neuron production occurs for longer than expected in primates than in mice in a sample of 86 developing primate and rodent brains. We use high-resolution structural, diffusion MR scans and histological material to compare the timing of the ganglionic eminences (GE) and cortical proliferative pool (CPP) maturation between humans, macaques, rats, and mice. We also compare the timing of post-neurogenetic maturation of GABAergic and pyramidal neurons in primates (i.e. humans, macaques) relative to rats and mice to identify whether delays in neurogenesis are concomitant with delayed post-neurogenetic maturation. We found that the growth of the GE and CPP are both selectively delayed compared with other events in primates. By contrast, the timing of post-neurogenetic GABAergic and pyramidal events (e.g. synaptogenesis) are predictable from the timing of other events in primates and in studied rodents. The extended duration of GABAergic and pyramidal neuron production is associated with the amplification of GABAerigc and pyramidal neuron numbers in the human and non-human primate cortex.


Asunto(s)
Coevolución Biológica , Neuronas GABAérgicas/citología , Neurogénesis , Células Piramidales/citología , Animales , Encéfalo/citología , Humanos , Macaca/fisiología , Ratones , Ratas
5.
J Comp Neurol ; 530(15): 2711-2748, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35603771

RESUMEN

Little is known about the development of the human entorhinal cortex (EC), a major hub in a widespread network for learning and memory, spatial navigation, high-order processing of object information, multimodal integration, attention and awareness, emotion, motivation, and perception of time. We analyzed a series of 20 fetal and two adult human brains using Nissl stain, acetylcholinesterase (AChE) histochemistry, and immunocytochemistry for myelin basic protein (MBP), neuronal nuclei antigen (NeuN), a pan-axonal neurofilament marker, and synaptophysin, as well as postmortem 3T MRI. In comparison with other parts of the cerebral cortex, the cytoarchitectural differentiation of the EC begins remarkably early, in the 10th week of gestation (w.g.). The differentiation occurs in a superficial magnocellular layer in the deep part of the marginal zone, accompanied by cortical plate (CP) condensation and multilayering of the deep part of CP. These processes last until the 13-14th w.g. At 14 w.g., the superficial lamina dissecans (LD) is visible, which divides the CP into the lamina principalis externa (LPE) and interna (LPI). Simultaneously, the rostral LPE separates into vertical cell-dense islands, whereas in the LPI, the deep LD emerges as a clear acellular layer. In the 16th w.g., the LPE remodels into vertical cell-dense and cell-sparse zones with a caudorostral gradient. At 20 w.g., NeuN immunoreactivity is most pronounced in the islands of layer II cells, whereas migration and differentiation inside-out gradients are seen simultaneously in both the upper (LPE) and the lower (LPI) pyramidal layers. At this stage, the EC adopts for the first time an adult-like cytoarchitectural organization, the superficial LD becomes discernible by 3T MRI, MBP-expressing oligodendrocytes first appear in the fimbria and the perforant path (PP) penetrates the subiculum to reach its molecular layer and travels along through the Cornu Ammonis fields to reach the suprapyramidal blade of the dentate gyrus, whereas the entorhinal-dentate branch perforates the hippocampal sulcus about 2-3 weeks later. The first AChE reactivity appears as longitudinal stripes at 23 w.g. in layers I and II of the rostrolateral EC and then also as AChE-positive in-growing fibers in islands of superficial layer III and layer II neurons. At 40 w.g., myelination of the PP starts as patchy MBP-immunoreactive oligodendrocytes and their processes. Our results refute the possibility of an inside-out pattern of the EC development and support the key role of layer II prospective stellate cells in the EC lamination. As the early cytoarchitectural differentiation of the EC is paralleled by the neurochemical development, these developmental milestones in EC structure and connectivity have implications for understanding its normal function, including its puzzling modular organization and potential contribution to consciousness content (awareness), as well as for its insufficiently explored deficits in developmental, psychiatric, and degenerative brain disorders.


Asunto(s)
Acetilcolinesterasa , Corteza Entorrinal , Desarrollo Fetal , Acetilcolinesterasa/metabolismo , Adulto , Corteza Entorrinal/crecimiento & desarrollo , Femenino , Feto , Hipocampo/crecimiento & desarrollo , Humanos , Neuronas/metabolismo , Embarazo , Estudios Prospectivos
6.
Front Neuroanat ; 15: 749390, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34970124

RESUMEN

The subthalamic nucleus (STN) is a small, ovoid structure, and an important site of deep brain stimulation (DBS) for the treatment of Parkinson's disease. Although the STN is a clinically important structure, there are many unresolved issues with regard to it. These issues are especially related to the anatomical subdivision, neuronal phenotype, neuronal composition, and spatial distribution. In this study, we have examined the expression pattern of 8 neuronal markers [nNOS, NeuN, parvalbumin (PV), calbindin (CB), calretinin (CR), FOXP2, NKX2.1, and PAX6] in the adult human STN. All of the examined markers, except CB, were present in the STN. To determine the neuronal density, we have performed stereological analysis on Nissl-stained and immunohistochemical slides of positive markers. The stereology data were also used to develop a three-dimensional map of the spatial distribution of neurons within the STN. The nNOS population exhibited the largest neuronal density. The estimated total number of nNOS STN neurons is 281,308 ± 38,967 (± 13.85%). The STN neuronal subpopulations can be divided into two groups: one with a neuronal density of approximately 3,300 neurons/mm3 and the other with a neuronal density of approximately 2,200 neurons/mm3. The largest density of STN neurons was observed along the ventromedial border of the STN and the density gradually decreased toward the dorsolateral border. In this study, we have demonstrated the presence of 7 neuronal markers in the STN, three of which were not previously described in the human STN. The human STN is a collection of diverse, intermixed neuronal subpopulations, and our data, as far as the cytoarchitectonics is concerned, did not support the tripartite STN subdivision.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA