Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Appl Physiol (1985) ; 136(4): 938-948, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385180

RESUMEN

This study investigated sex differences in energy balance, body composition, and metabolic and endocrine markers during prolonged military training. Twenty-three trainees (14 women) completed 44-wk military training (three terms of 14 wk with 2-wk adventurous training). Dietary intake and total energy expenditure were measured over 10 days during each term by weighed food and doubly labeled water. Body composition was measured by dual-energy X-ray absorptiometry (DXA) at baseline and at the end of each term. Circulating metabolic and endocrine markers were measured at baseline and at the end of terms 2 and 3. Absolute energy intake and total energy expenditure were higher, and energy balance was lower, for men than women (P ≤ 0.008). Absolute energy intake and balance were lower, and total energy expenditure was higher, during term 2 than terms 1 and 3 (P < 0.001). Lean mass did not change with training (P = 0.081). Fat mass and body fat increased from term 1 to terms 2 and 3 (P ≤ 0.045). Leptin increased from baseline to terms 2 and 3 in women (P ≤ 0.002) but not in men (P ≥ 0.251). Testosterone and free androgen index increased from baseline to term 3 (P ≤ 0.018). Free thyroxine (T4) decreased and thyroid-stimulating hormone (TSH) increased from baseline to term 2 and term 3 (P ≤ 0.031). Cortisol decreased from baseline to term 3 (P = 0.030). IGF-I and total triiodothyronine (T3) did not change with training (P ≥ 0.148). Men experienced greater energy deficits than women during military training due to higher total energy expenditure.NEW & NOTEWORTHY Energy deficits are common in military training and can result in endocrine and metabolic disturbances. This study provides first investigation of sex differences in energy balance, body composition, and endocrine and metabolic markers in response to prolonged and arduous military training. Men experienced greater energy deficits than women due to higher energy expenditure, which was not compensated for by increased energy intake. These energy deficits were not associated with decreases in fat or lean mass or metabolic or endocrine function.


Asunto(s)
Personal Militar , Humanos , Femenino , Masculino , Caracteres Sexuales , Composición Corporal , Tejido Adiposo/metabolismo , Ingestión de Energía , Metabolismo Energético
2.
JMIR Res Protoc ; 13: e50542, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990638

RESUMEN

BACKGROUND: Women of reproductive age experience cyclical variation in the female sex steroid hormones 17ß-estradiol and progesterone during the menstrual cycle that is attenuated by some hormonal contraceptives. Estrogens perform a primary function in sexual development and reproduction but have nonreproductive effects on bone, muscle, and sinew tissues (ie, ligaments and tendons), which may influence injury risk and physical performance. OBJECTIVE: The purpose of the study is to understand the effect of the menstrual cycle and hormonal contraceptive use on bone and calcium metabolism, and musculoskeletal health and performance. METHODS: A total of 5 cohorts of physically active women (aged 18-40 years) will be recruited to participate: eumenorrheic, nonhormonal contraceptive users (n=20); combined oral contraceptive pill (COCP) users (n=20); hormonal implant users (n=20); hormonal intrauterine system users (n=20); and hormonal injection users (n=20). Participants must have been using the COCP and implant for at least 1 year and the intrauterine system and injection for at least 2 years. First-void urine samples and fasted blood samples will be collected for biochemical analysis of calcium and bone metabolism, hormones, and metabolic markers. Knee extensor and flexor strength will be measured using an isometric dynamometer, and lower limb tendon and stiffness, tone, and elasticity will be measured using a Myoton device. Functional movement will be assessed using a single-leg drop to assess the frontal plane projection angle and the qualitative assessment of single leg loading. Bone density and macro- and microstructure will be measured using ultrasound, dual-energy x-ray absorptiometry, and high-resolution peripheral quantitative computed tomography. Skeletal material properties will be estimated from reference point indentation, performed on the flat surface of the medial tibia diaphysis. Body composition will be assessed by dual-energy x-ray absorptiometry. The differences in outcome measures between the hormonal contraceptive groups will be analyzed in a one-way between-group analysis of covariance. Within the eumenorrheic group, the influence of the menstrual cycle on outcome measures will be assessed using a linear mixed effects model. Within the COCP group, differences across 2 time points will be analyzed using the paired-samples 2-tailed t test. RESULTS: The research was funded in January 2020, and data collection started in January 2022, with a projected data collection completion date of August 2024. The number of participants who have consented at the point of manuscript submission is 66. It is expected that all data analysis will be completed and results published by the end of 2024. CONCLUSIONS: Understanding the effects of the menstrual cycle and hormonal contraception on musculoskeletal health and performance will inform contraceptive choices for physically active women to manage injury risk. TRIAL REGISTRATION: ClinicalTrials.gov NCT05587920; https://classic.clinicaltrials.gov/ct2/show/NCT05587920. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/50542.


Asunto(s)
Ciclo Menstrual , Humanos , Femenino , Adulto , Adulto Joven , Estudios Transversales , Estudios Prospectivos , Ciclo Menstrual/efectos de los fármacos , Adolescente , Anticoncepción Hormonal/efectos adversos , Estudios de Cohortes , Densidad Ósea/efectos de los fármacos
3.
J Appl Physiol (1985) ; 134(6): 1481-1495, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37141423

RESUMEN

This study investigated sex differences in, and the effect of protein supplementation on, bone metabolism during a 36-h military field exercise. Forty-four British Army Officer cadets (14 women) completed a 36-h field exercise. Participants consumed either their habitual diet [n = 14 women (Women) and n = 15 men (Men Controls)] or the habitual diet with an additional 46.6 g·day-1 of protein for men [n = 15 men (Men Protein)]. Women and Men Protein were compared with Men Controls to examine the effect of sex and protein supplementation. Circulating markers of bone metabolism were measured before, 24 h after (postexercise), and 96 h after (recovery) the field exercise. Beta C-telopeptide cross links of type 1 collagen and cortisol were not different between time points or Women and Men Controls (P ≥ 0.094). Procollagen type I N-terminal propeptide decreased from baseline to postexercise (P < 0.001) and recovery (P < 0.001) in Women and Men Controls. Parathyroid hormone (PTH) increased from baseline to post-exercise (P = 0.006) and decreased from postexercise to recovery (P = 0.047) in Women and Men Controls. Total 25(OH)D increased from baseline to postexercise (P = 0.038) and recovery (P < 0.001) in Women and Men Controls. Testosterone decreased from baseline to post-exercise (P < 0.001) and recovery (P = 0.007) in Men Controls, but did not change for Women (all P = 1.000). Protein supplementation in men had no effect on any marker. Men and women experience similar changes to bone metabolism-decreased bone formation and increased PTH-following a short-field exercise. Protein had no protective effect likely because of the energy deficit.NEW & NOTEWORTHY Energy deficits are common in arduous military training and can cause disturbances to bone metabolism. This study provides first evidence that short periods of severe energy deficit and arduous exercise-in the form of a 36-h military field exercise-can suppress bone formation for at least 96 h, and the suppression in bone formation was not different between men and women. Protein feeding does not offset decreases in bone formation during severe energy deficits.


Asunto(s)
Personal Militar , Humanos , Masculino , Femenino , Hormona Paratiroidea , Huesos , Suplementos Dietéticos , Metabolismo Energético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA