RESUMEN
There is evidence that viral oncolysis is synergistic with immune checkpoint inhibition in cancer therapy but the underlying mechanisms are unclear. Here, we investigated whether local viral infection of malignant tumors is capable of overcoming systemic resistance to PD-1-immunotherapy by modulating the spectrum of tumor-directed CD8 T-cells. To focus on neoantigen-specific CD8 T-cell responses, we performed transcriptomic sequencing of PD-1-resistant CMT64 lung adenocarcinoma cells followed by algorithm-based neoepitope prediction. Investigations on neoepitope-specific T-cell responses in tumor-bearing mice demonstrated that PD-1 immunotherapy was insufficient whereas viral oncolysis elicited cytotoxic T-cell responses to a conserved panel of neoepitopes. After combined treatment, we observed that PD-1-blockade did not affect the magnitude of oncolysis-mediated antitumoral immune responses but a broader spectrum of T-cell responses including additional neoepitopes was observed. Oncolysis of the primary tumor significantly abrogated systemic resistance to PD-1-immunotherapy leading to improved elimination of disseminated lung tumors. Our observations were confirmed in a transgenic murine model of liver cancer where viral oncolysis strongly induced PD-L1 expression in primary liver tumors and lung metastasis. Furthermore, we demonstrated that combined treatment completely inhibited dissemination in a CD8 T-cell-dependent manner. Therefore, our results strongly recommend further evaluation of virotherapy and concomitant PD-1 immunotherapy in clinical studies.
Asunto(s)
Neoplasias/etiología , Neoplasias/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Infecciones Tumorales por Virus , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/metabolismo , Antineoplásicos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Modelos Animales de Enfermedad , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Expresión Génica , Inmunoterapia , Isoinjertos , Ligandos , Ratones , Ratones Transgénicos , Mutación , Neoplasias/patología , Neoplasias/terapia , Viroterapia Oncolítica , Virus Oncolíticos/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptores Toll-Like/metabolismoRESUMEN
UNLABELLED: Only humans and chimpanzees are susceptible to chronic infection by hepatitis C virus (HCV). The restricted species tropism of HCV is determined by distinct host factor requirements at different steps of the viral life cycle. In addition, effective innate immune targeting precludes efficient propagation of HCV in nonhuman cells. Species-specificity of HCV host factor usage for cell entry and virus release has been explored. However, the reason for inefficient HCV RNA replication efficiency in mouse liver cells remains elusive. To address this, we generated novel mouse liver-derived cell lines with specific lesions in mitochondrial antiviral signaling protein (MAVS), interferon regulatory factor 3 (IRF3), or Interferon-α/ß receptor (IFNAR) by in vivo immortalization. Blunted innate immune responses in these cells modestly increased HCV RNA replication. However, ectopic expression of liver-specific human microRNA 122 (miR-122) further boosted RNA replication in all knockout cell lines. Remarkably, MAVS(-/-) miR-122 cells sustained vigorous HCV RNA replication, attaining levels comparable to the highly permissive human hepatoma cell line Huh-7.5. RNA replication was dependent on mouse cyclophilin and phosphatidylinositol-4 kinase III alpha (PI4KIIIα) and was also observed after transfection of full-length viral RNA. Additionally, ectopic expression of either human or mouse apolipoprotein E (ApoE) was sufficient to permit release of infectious particles. Finally, expression of human entry cofactors rendered these cells permissive to HCV infection, thus confirming that all steps of the HCV replication cycle can be reconstituted in mouse liver-derived cells. CONCLUSION: Blunted innate immunity, abundant miR-122, and HCV entry factor expression permits propagation of HCV in mouse liver-derived cell lines.
Asunto(s)
Hepacivirus/fisiología , Replicación Viral , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apolipoproteínas E/metabolismo , Línea Celular Tumoral , Ciclofilinas/metabolismo , Humanos , Inmunidad Innata , Hígado/virología , Ratones , Ratones Noqueados , MicroARNs/metabolismo , ARN Viral/metabolismo , Internalización del VirusRESUMEN
BACKGROUND AND AIMS: Viral infection of a dying cell dictates the immune response against intracellular antigens, suggesting that virotherapy may be an effective tool to induce immunogenic cell death during systemic cancer treatment. Since viruses and proteasome inhibitors both induce accumulation of misfolded proteins, endoplasmic reticulum (ER) stress and immune responses during treatment of hepatocellular carcinoma (HCC) with bortezomib and the tumour-specifically replicating virus hTert-Ad (human telomerase reverse transcriptase promoter-regulated adenovirus) were investigated. METHODS: Unfolded protein response (UPR) pathways and ER stress-mediated apoptosis were investigated by western blots, caspase-3 assays, 4',6-diamidino-2-phenylindole (DAPI) and Annexin V staining in HCC cells following hTert-Ad/bortezomib treatment. Oncolysis was assessed in subcutaneous HCC mouse models. Antiviral/antitumoural immune responses were characterised in immunocompetent HCC mouse models by ELISA, ELISpot assays and pentamer staining. Systemic efficacy of antitumoural immunity was investigated by determination of lung metastases burden. RESULTS: Bortezomib and hTert-Ad trigger complementary UPR pathways but negatively interfere with important recovery checkpoints, resulting in enhanced apoptosis of HCC cells in vitro and improved oncolysis in vivo. In immunocompetent mice, bortezomib inhibited antiviral immune responses, whereas ER stress-induced apoptosis of infected HCC resulted in caspase-dependent triggering of antitumoural immunity. In therapeutic settings in immunocompetent, but not in immunodeficient or CD8-depleted mice, virotherapy-induced antitumoural immunity efficiently inhibited outgrowth of non-infected lung metastases. Immunotherapeutic efficacy could be significantly improved by bortezomib in experiments with low viral doses. CONCLUSION: Proteasome inhibition during virotherapy disrupts the UPR, leading to enhanced ER stress-induced apoptosis, improved local oncolysis and antitumoural immunity. The results suggest that combining intratumoural virotherapy with adjuvant systemic therapies, which specifically support the function of the virotherapy as an antitumoural vaccine, is a promising immunotherapeutic strategy against HCC.
Asunto(s)
Carcinoma Hepatocelular/secundario , Neoplasias Hepáticas/terapia , Neoplasias Pulmonares/secundario , Viroterapia Oncolítica/métodos , Adenoviridae , Animales , Antineoplásicos/uso terapéutico , Apoptosis , Ácidos Borónicos/uso terapéutico , Bortezomib , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/terapia , Terapia Combinada , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/fisiología , Femenino , Inmunidad Celular , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/prevención & control , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Inhibidores de Proteasoma , Pirazinas/uso terapéutico , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/fisiología , Células Tumorales Cultivadas , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto/métodosRESUMEN
Virus-neutralizing antibodies are a severe obstacle in oncolytic virotherapy. Here, we present a strategy to convert this unfavorable immune response into an anticancer immunotherapy via molecular retargeting. Application of a bifunctional adapter harboring a tumor-specific ligand and the adenovirus hexon domain DE1 for engaging antiadenoviral antibodies, attenuates tumor growth and prolongs survival in adenovirus-immunized mice. The therapeutic benefit achieved by tumor retargeting of antiviral antibodies is largely due to NK cell-mediated triggering of tumor-directed CD8 T-cells. We further demonstrate that antibody-retargeting (Ab-retargeting) is a feasible method to sensitize tumors to PD-1 immune checkpoint blockade. In therapeutic settings, Ab-retargeting greatly improves the outcome of intratumor application of an oncolytic adenovirus and facilitates long-term survival in treated animals when combined with PD-1 checkpoint inhibition. Tumor-directed retargeting of preexisting or virotherapy-induced antiviral antibodies therefore represents a promising strategy to fully exploit the immunotherapeutic potential of oncolytic virotherapy and checkpoint inhibition.
Asunto(s)
Adenoviridae/inmunología , Anticuerpos/inmunología , Inmunoterapia/métodos , Neoplasias/terapia , Viroterapia Oncolítica/métodos , Virus Oncolíticos/inmunología , Adenoviridae/genética , Animales , Anticuerpos Neutralizantes/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Células HEK293 , Humanos , Células Asesinas Naturales/inmunología , Ratones , Terapia Molecular Dirigida/métodos , Neoplasias/inmunología , Virus Oncolíticos/genéticaRESUMEN
Antagonistic antibodies targeting coinhibitory receptors have revolutionized the treatment of cancer by inducing durable immune responses and clinical remissions in patients. In contrast, success of agonistic costimulatory antibodies has thus far been limited because of the insufficient induction of adaptive immune responses. Here, we describe a novel vaccination method consisting of a primary dendritic cell (DC) immunization followed by a composite vaccination, including an agonistic CD40 antibody, soluble antigen, and a TLR3 agonist, referred to as CoAT. In mice, DC/CoAT prime-boost vaccinations targeting either MHC class I or II neoantigens or tumor-associated antigens rendered up to 60% of the total T-cell population specific for a single tumor epitope. DC/CoAT induced durable and complete remissions of large subcutaneous tumors without detectable side effects. Thus, booster vaccinations with agonistic costimulatory antibodies represent an ideal means to amplify DC vaccinations and induce robust T-cell immune responses while providing maximum flexibility regarding the choice of antigen. Cancer Res; 77(8); 1918-26. ©2017 AACR.
Asunto(s)
Antígenos CD40/inmunología , Vacunas contra el Cáncer/inmunología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/terapia , Células Dendríticas/inmunología , Células Dendríticas/trasplante , Animales , Antígenos CD40/agonistas , Vacunas contra el Cáncer/administración & dosificación , Inmunoterapia Adoptiva/métodos , Melanoma Experimental/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oligopéptidos/inmunología , Receptor Toll-Like 3/agonistas , Receptor Toll-Like 3/inmunología , Vacunación/métodosRESUMEN
CD4 and CD8 T cells play a pivotal role in controlling tumor growth. However, the interplay of both cell types and their role in tumor suppression still remain elusive. In this study, we investigated the regulation of CD4 and CD8 T cell responses to different classes of tumor-specific antigens in liver cancer mouse models. Tumors were induced in p19Arf-deficient mice by hydrodynamic injection of transposon plasmids encoding NrasG12V and pre-defined tumor antigens. This allowed for assessing the regulation of tumor-specific CD4 and CD8 T cell responses. We showed that MHC class I tumor immunogenicity was essential to trigger tumor-directed CD4 T cells. Tumor-specific CD8 T cell responses arose independently of CD4 T cells, but they required Th1-polarized CD4 T cells for efficient tumor suppression. Our results further indicate that the immune system is incapable of eliciting sufficient numbers of T cells directed against antigens derived from immunoedited tumors, which consequently leads to a lack of T-cell-mediated tumor suppression in untreated hosts.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Neoplasias/inmunología , Animales , Antígenos de Neoplasias/inmunología , Carcinogénesis/inmunología , Carcinogénesis/patología , Citotoxicidad Inmunológica , Genes MHC Clase I , Genes ras , Vigilancia Inmunológica , Ratones Endogámicos C57BL , Neoplasias/patología , Análisis de Supervivencia , Linfocitos T Citotóxicos/inmunología , Células TH1/inmunologíaRESUMEN
Vaccination using DCs pulsed with tumor lysates or specific tumor-associated peptides has so far yielded limited clinical success for cancer treatment, due mainly to the low immunogenicity of tumor-associated antigens. In this study, we have identified intratumoral virus-induced inflammation as a precondition for effective antitumor DC vaccination in mice. Administration of a tumor-targeted DC vaccine during ongoing virus-induced tumor inflammation, a regimen referred to as oncolysis-assisted DC vaccination (ODC), elicited potent antitumoral CD8+ T cell responses. This potent effect was not replicated by TLR activation outside the context of viral infection. ODC-elicited immune responses mediated marked tumor regression and successful eradication of preestablished lung colonies, an essential prerequisite for potentially treating metastatic cancers. Unexpectedly, depletion of Tregs during ODC did not enhance therapeutic efficacy; rather, it abrogated antitumor cytotoxicity. This phenomenon could be attributed to a compensatory induction of myeloid-derived suppressor cells in Treg-depleted and thus vigorously inflamed tumors, which prevented ODC-mediated immune responses. Consequently, Tregs are not only general suppressors of immune responses, but are essential for the therapeutic success of multimodal and temporally fine-adjusted vaccination strategies. Our results highlight tumor-targeting, replication-competent viruses as attractive tools for eliciting effective antitumor responses upon DC vaccination.
Asunto(s)
Vacunas contra el Cáncer/inmunología , Células Dendríticas/inmunología , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/patología , Linfocitos T Reguladores/inmunología , Virus/inmunología , Animales , Línea Celular , Humanos , Ratones , Ratones Endogámicos , Neoplasias/virología , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patologíaRESUMEN
Virotherapy can potentially be used to induce tumor-specific immune responses and to overcome tumor-mediated tolerance mechanisms because apoptotic tumor cells are exposed together with viral danger signals during oncolysis. However, insufficient numbers of dendritic cells (DC) present at the site of oncolysis can limit a tumor-specific immune response and the resulting therapeutic benefit. We investigated MHC class I peptide-specific immune responses against model antigens ovalbumin (OVA) and hemagglutinin (HA) in mouse tumor models that support efficient replication of the oncolytic adenovirus hTert-Ad. Virotherapy resulted in peptide-specific cytotoxic T-cell responses against intracellular tumor antigens. Triggering of DC and T-cell infiltration to the oncolytic tumors by macrophage inflammatory protein 1alpha (MIP-1alpha, CCL3) and Fms-like tyrosine kinase-3 ligand (Flt3L) enhanced both antitumoral and antiviral immune responses. Although immune-mediated clearance of the virus can restrict therapeutic efficacy of virotherapy, MIP-1alpha/FLT3L-augmented hTert-Ad virotherapy inhibited local tumor growth more effectively than virotherapy alone. In agreement with the hypothesis that immune-mediated mechanisms account for improved outcome in MIP-1alpha/FLT3L virotherapy, we observed systemic antitumoral effects by MIP-1alpha/FLT3L virotherapy on uninfected lung metastasis in immunocompetent mice but not in nude mice. Furthermore, MIP-1alpha/FLT3L virotherapy of primary tumors was strongly synergistic with tumor DC vaccination in inhibition of established lung metastasis. Combined viroimmunotherapy resulted in long-term survival of 50% of treated animals. In summary, improvement of cross-presentation of tumor antigens by triggering of DC and T-cell infiltration during virotherapy enhances antitumoral immune response that facilitates an effective viroimmunotherapy of primary tumors and established metastases.