Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Nano Mater ; 5(12): 18116-18126, 2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36583128

RESUMEN

In many nano(opto)electronic devices, the roughness at surfaces and interfaces is of increasing importance, with roughness often contributing toward losses and defects, which can lead to device failure. Consequently, approaches that either limit roughness or smoothen surfaces are required to minimize surface roughness during fabrication. The atomic-scale processing techniques atomic layer deposition (ALD) and atomic layer etching (ALE) have experimentally been shown to smoothen surfaces, with the added benefit of offering uniform and conformal processing and precise thickness control. However, the mechanisms which drive smoothing during ALD and ALE have not been investigated in detail. In this work, smoothing of surfaces by ALD and ALE is studied using finite difference simulations that describe deposition/etching as a front propagating uniformly and perpendicular to the surface at every point. This uniform front propagation model was validated by performing ALD of amorphous Al2O3 using the TMA/O2 plasma. ALE from the TMA/SF6 plasma was also studied and resulted in faster smoothing than predicted by purely considering uniform front propagation. Correspondingly, it was found that for such an ALE process, a second mechanism contributes to the smoothing, hypothesized to be related to curvature-dependent surface fluorination. Individually, the atomic-scale processing techniques enable smoothing; however, ALD and ALE will need to be combined to achieve thin and smooth films, as is demonstrated and discussed in this work for multiple applications.

2.
J Phys Chem C Nanomater Interfaces ; 125(15): 8244-8252, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-34084261

RESUMEN

Atomic layer deposition (ALD) can provide nanometer-thin films with excellent conformality on demanding three-dimensional (3D) substrates. This also holds for plasma-assisted ALD, provided that the loss of reactive radicals through surface recombination is sufficiently low. In this work, we determine the surface recombination probability r of oxygen radicals during plasma ALD of SiO2 and TiO2 for substrate temperatures from 100 to ∼240 °C and plasma pressures from 12 to 130 mTorr (for SiO2). For both processes, the determined values of r are very low, i.e., ∼10-4 or lower, and decrease with temperature and pressure down to ∼10-5 within the studied ranges. Accordingly, deposition on trench structures with aspect ratios (ARs) of <200 is typically not significantly limited by recombination and obtaining excellent film conformality is relatively facile. For higher AR values, e.g., approaching 1000, the plasma time needed to reach saturation increases exponentially and becomes increasingly dependent on the process conditions and the corresponding value of r. Similar dependence on process conditions can be present for plasma ALD of other materials as well, where, in certain cases, film growth is already recombination-limited for AR values of ∼10. Radical recombination data and trends as provided by this work are valuable for optimizing plasma ALD throughput and feasibility for high-AR applications and can also serve as input for modeling of radical recombination mechanisms.

3.
J Phys Chem C Nanomater Interfaces ; 125(7): 3913-3923, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33815650

RESUMEN

Metal fluorides generally demonstrate a wide band gap and a low refractive index, and they are commonly employed in optics and optoelectronics. Recently, an SF6 plasma was introduced as a novel co-reactant for the atomic layer deposition (ALD) of metal fluorides. In this work, the reaction mechanisms underlying the ALD of fluorides using a fluorine-containing plasma are investigated, considering aluminum fluoride (AlF3) ALD from Al(CH3)3 and an SF6 plasma as a model system. Surface infrared spectroscopy studies indicated that Al(CH3)3 reacts with the surface in a ligand-exchange reaction by accepting F from the AlF3 film and forming CH3 surface groups. It was found that at low deposition temperatures Al(CH3)3 also reacts with HF surface species. These HF species are formed during the SF6 plasma exposure and were detected both at the surface and in the gas phase using infrared spectroscopy and quadrupole mass spectrometry (QMS), respectively. Furthermore, QMS and optical emission spectroscopy (OES) measurements showed that CH4 and CH y F4-y (y ≤ 3) species are the main reaction products during the SF6 plasma exposure. The CH4 release is explained by the reaction of CH3 ligands with HF, while CH y F4-y species originate from the interaction of the SF6 plasma with CH3 ligands. At high temperatures, a transition from AlF3 deposition to Al2O3 etching was observed using infrared spectroscopy. The obtained insights indicate a reaction pathway where F radicals from the SF6 plasma eliminate the CH3 ligands remaining after precursor dosing and where F radicals are simultaneously responsible for the fluorination reaction. The understanding of the reaction mechanisms during AlF3 growth can help in developing ALD processes for other metal fluorides using a fluorine-containing plasma as the co-reactant as well as atomic layer etching (ALE) processes involving surface fluorination.

4.
Chem Mater ; 33(13): 5002-5009, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34276135

RESUMEN

This work demonstrates that ions have a strong impact on the growth per cycle (GPC) and material properties during plasma-assisted atomic layer deposition (ALD) of TiO2 (titanium dioxide), even under mild plasma conditions with low-energy (<20 eV) ions. Using vertical trench nanostructures and microscopic cavity structures that locally block the flux of ions, it is observed that the impact of (low-energy) ions is an important factor for the TiO2 film conformality. Specifically, it is demonstrated that the GPC in terms of film thickness can increase by 20 to >200% under the influence of ions, which is correlated with an increase in film crystallinity and an associated strong reduction in the wet etch rate (in 30:1 buffered HF). The magnitude of the influence of ions is observed to depend on multiple parameters such as the deposition temperature, plasma exposure time, and ion energy, which may all be used to minimize or exploit this effect. For example, a relatively moderate influence of ions is observed at 200 °C when using short plasma steps and a grounded substrate, providing a low ion-energy dose of ∼1 eV nm-2 cycle-1, while a high effect is obtained when using extended plasma exposures or substrate biasing (∼100 eV nm-2 cycle-1). This work on TiO2 shows that detailed insight into the role of ions during plasma ALD is essential for precisely controlling the film conformality, material properties, and process reproducibility.

5.
Nanoscale ; 13(22): 10092-10099, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34052842

RESUMEN

Oxygen is often detected as impurity in metal and metal nitride films prepared by atomic layer deposition (ALD) and its presence has profound and adverse effects on the material properties. In this work, we present the case study of HfNx films prepared by plasma-assisted ALD by alternating exposures of CpHf(NMe2)3 and H2 plasma. First, we identify the primary source of O contamination in the film. Specifically, we find that the extent of O incorporation in HfNx films is determined by the flux of background H2O/O2 residual gases reaching the HfNx surface during the ALD process and leads to the formation of Hf-O bonds. Then, we report on the decrease in the concentration of Hf-O bonds in the film upon application of an external radiofrequency (rf) substrate bias during the H2 plasma step. The experimental work is accompanied by first principles calculations to gain insights into the O incorporation and its mitigation upon the impingement of energetic ions on the surface. Specifically, we find that the dissociative binding of H2O on a bare HfN surface is highly favored, resulting in surface Hf-OH groups and concomitant increase in the oxidation state of Hf. We also show that energetic cations (H+, H2+ and H3+) lead to the dissociation of surface Hf-OH bonds, H2O formation, and its subsequent desorption from the surface. The latter is followed by reduction of the Hf oxidation state, presumably by H˙ radicals. The atomic-level understanding obtained in this work on O incorporation and its abstraction are expected to be crucial to prevent O impurities in the HfNx films and contribute to the fabrication of other technologically relevant low resistivity ALD-grown transition metal nitride films.

6.
Nanoscale ; 10(18): 8615-8627, 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29696289

RESUMEN

Low-temperature controllable synthesis of monolayer-to-multilayer thick MoS2 with tuneable morphology is demonstrated by using plasma enhanced atomic layer deposition (PEALD). The characteristic self-limiting ALD growth with a growth-per-cycle of 0.1 nm per cycle and digital thickness control down to a monolayer are observed with excellent wafer scale uniformity. The as-deposited films are found to be polycrystalline in nature showing the signature Raman and photoluminescence signals for the mono-to-few layered regime. Furthermore, a transformation in film morphology from in-plane to out-of-plane orientation of the 2-dimensional layers as a function of growth temperature is observed. An extensive study based on high-resolution transmission electron microscopy is presented to unravel the nucleation mechanism of MoS2 on SiO2/Si substrates at 450 °C. In addition, a model elucidating the film morphology transformation (at 450 °C) is hypothesized. Finally, the out-of-plane oriented films are demonstrated to outperform the in-plane oriented films in the hydrogen evolution reaction for water splitting applications.

7.
ACS Appl Mater Interfaces ; 10(15): 13158-13180, 2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29554799

RESUMEN

Oxide and nitride thin-films of Ti, Hf, and Si serve numerous applications owing to the diverse range of their material properties. It is therefore imperative to have proper control over these properties during materials processing. Ion-surface interactions during plasma processing techniques can influence the properties of a growing film. In this work, we investigated the effects of controlling ion characteristics (energy, dose) on the properties of the aforementioned materials during plasma-enhanced atomic layer deposition (PEALD) on planar and 3D substrate topographies. We used a 200 mm remote PEALD system equipped with substrate biasing to control the energy and dose of ions by varying the magnitude and duration of the applied bias, respectively, during plasma exposure. Implementing substrate biasing in these forms enhanced PEALD process capability by providing two additional parameters for tuning a wide range of material properties. Below the regimes of ion-induced degradation, enhancing ion energies with substrate biasing during PEALD increased the refractive index and mass density of TiO x and HfO x and enabled control over their crystalline properties. PEALD of these oxides with substrate biasing at 150 °C led to the formation of crystalline material at the low temperature, which would otherwise yield amorphous films for deposition without biasing. Enhanced ion energies drastically reduced the resistivity of conductive TiN x and HfN x films. Furthermore, biasing during PEALD enabled the residual stress of these materials to be altered from tensile to compressive. The properties of SiO x were slightly improved whereas those of SiN x were degraded as a function of substrate biasing. PEALD on 3D trench nanostructures with biasing induced differing film properties at different regions of the 3D substrate. On the basis of the results presented herein, prospects afforded by the implementation of this technique during PEALD, such as enabling new routes for topographically selective deposition on 3D substrates, are discussed.

8.
ACS Appl Mater Interfaces ; 9(2): 1858-1869, 2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-28059494

RESUMEN

The advent of three-dimensional (3D) finFET transistors and emergence of novel memory technologies place stringent requirements on the processing of silicon nitride (SiNx) films used for a variety of applications in device manufacturing. In many cases, a low temperature (<400 °C) deposition process is desired that yields high quality SiNx films that are etch resistant and also conformal when grown on 3D substrate topographies. In this work, we developed a novel plasma-enhanced atomic layer deposition (PEALD) process for SiNx using a mono-aminosilane precursor, di(sec-butylamino)silane (DSBAS, SiH3N(sBu)2), and N2 plasma. Material properties have been analyzed over a wide stage temperature range (100-500 °C) and compared with those obtained in our previous work for SiNx deposited using a bis-aminosilane precursor, bis(tert-butylamino)silane (BTBAS, SiH2(NHtBu)2), and N2 plasma. Dense films (∼3.1 g/cm3) with low C, O, and H contents at low substrate temperatures (<400 °C) were obtained on planar substrates for this process when compared to other processes reported in the literature. The developed process was also used for depositing SiNx films on high aspect ratio (4.5:1) 3D trench nanostructures to investigate film conformality and wet-etch resistance (in dilute hydrofluoric acid, HF/H2O = 1:100) relevant for state-of-the-art device architectures. Film conformality was below the desired levels of >95% and attributed to the combined role played by nitrogen plasma soft saturation, radical species recombination, and ion directionality during SiNx deposition on 3D substrates. Yet, very low wet-etch rates (WER ≤ 2 nm/min) were observed at the top, sidewall, and bottom trench regions of the most conformal film deposited at low substrate temperature (<400 °C), which confirmed that the process is applicable for depositing high quality SiNx films on both planar and 3D substrate topographies.

9.
ACS Appl Mater Interfaces ; 7(30): 16723-9, 2015 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-26168056

RESUMEN

Hydrogen-doped indium oxide (In2O3:H) has recently emerged as an enabling transparent conductive oxide for solar cells, in particular for silicon heterojunction solar cells because its high electron mobility (>100 cm(2)/(V s)) allows for a simultaneously high electrical conductivity and optical transparency. Here, we report on high-quality In2O3:H prepared by a low-temperature atomic layer deposition (ALD) process and present insights into the doping mechanism and the electron scattering processes that limit the carrier mobility in such films. The process consists of ALD of amorphous In2O3:H at 100 °C and subsequent solid-phase crystallization at 150-200 °C to obtain large-grained polycrystalline In2O3:H films. The changes in optoelectronic properties upon crystallization have been monitored both electrically by Hall measurements and optically by analysis of the Drude response. After crystallization, an excellent carrier mobility of 128 ± 4 cm(2)/(V s) can be obtained at a carrier density of 1.8 × 10(20) cm(-3), irrespective of the annealing temperature. Temperature-dependent Hall measurements have revealed that electron scattering is dominated by unavoidable phonon and ionized impurity scattering from singly charged H-donors. Extrinsic defect scattering related to material quality such as grain boundary and neutral impurity scattering was found to be negligible in crystallized films indicating that the carrier mobility is maximized. Furthermore, by comparison of the absolute H-concentration and the carrier density in crystallized films, it is deduced that <4% of the incorporated H is an active dopant in crystallized films. Therefore, it can be concluded that inactive H atoms do not (significantly) contribute to defect scattering, which potentially explains why In2O3:H films are capable of achieving a much higher carrier mobility than conventional In2O3:Sn (ITO).

10.
J Phys Chem Lett ; 6(18): 3610-4, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26722730

RESUMEN

There is an urgent need to deposit uniform, high-quality, conformal SiN(x) thin films at a low-temperature. Conforming to these constraints, we recently developed a plasma enhanced atomic layer deposition (ALD) process with bis(tertiary-butyl-amino)silane (BTBAS) as the silicon precursor. However, deposition of high quality SiNx thin films at reasonable growth rates occurs only when N2 plasma is used as the coreactant; strongly reduced growth rates are observed when other coreactants like NH3 plasma, or N2-H2 plasma are used. Experiments reported in this Letter reveal that NH(x)- or H- containing plasmas suppress film deposition by terminating reactive surface sites with H and NH(x) groups and inhibiting precursor adsorption. To understand the role of these surface groups on precursor adsorption, we carried out first-principles calculations of precursor adsorption on the ß-Si3N4(0001) surface with different surface terminations. They show that adsorption of the precursor is strong on surfaces with undercoordinated surface sites. In contrast, on surfaces with H, NH2 groups, or both, steric hindrance leads to weak precursor adsorption. Experimental and first-principles results together show that using an N2 plasma to generate reactive undercoordinated surface sites allows strong adsorption of the silicon precursor and, hence, is key to successful deposition of silicon nitride by ALD.

11.
ACS Appl Mater Interfaces ; 7(35): 19857-62, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26305370

RESUMEN

Atomic layer deposition (ALD) of silicon nitride (SiNx) is deemed essential for a variety of applications in nanoelectronics, such as gate spacer layers in transistors. In this work an ALD process using bis(tert-butylamino)silane (BTBAS) and N2 plasma was developed and studied. The process exhibited a wide temperature window starting from room temperature up to 500 °C. The material properties and wet-etch rates were investigated as a function of plasma exposure time, plasma pressure, and substrate table temperature. Table temperatures of 300-500 °C yielded a high material quality and a composition close to Si3N4 was obtained at 500 °C (N/Si=1.4±0.1, mass density=2.9±0.1 g/cm3, refractive index=1.96±0.03). Low wet-etch rates of ∼1 nm/min were obtained for films deposited at table temperatures of 400 °C and higher, similar to that achieved in the literature using low-pressure chemical vapor deposition of SiNx at >700 °C. For novel applications requiring significantly lower temperatures, the temperature window from room temperature to 200 °C can be a solution, where relatively high material quality was obtained when operating at low plasma pressures or long plasma exposure times.

12.
ACS Appl Mater Interfaces ; 7(40): 22525-32, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26393381

RESUMEN

Encapsulation of organic (opto-)electronic devices, such as organic light-emitting diodes (OLEDs), photovoltaic cells, and field-effect transistors, is required to minimize device degradation induced by moisture and oxygen ingress. SiNx moisture permeation barriers have been fabricated using a very recently developed low-temperature plasma-assisted atomic layer deposition (ALD) approach, consisting of half-reactions of the substrate with the precursor SiH2(NH(t)Bu)2 and with N2-fed plasma. The deposited films have been characterized in terms of their refractive index and chemical composition by spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). The SiNx thin-film refractive index ranges from 1.80 to 1.90 for films deposited at 80 °C up to 200 °C, respectively, and the C, O, and H impurity levels decrease when the deposition temperature increases. The relative open porosity content of the layers has been studied by means of multisolvent ellipsometric porosimetry (EP), adopting three solvents with different kinetic diameters: water (∼0.3 nm), ethanol (∼0.4 nm), and toluene (∼0.6 nm). Irrespective of the deposition temperature, and hence the impurity content in the SiNx films, no uptake of any adsorptive has been observed, pointing to the absence of open pores larger than 0.3 nm in diameter. Instead, multilayer development has been observed, leading to type II isotherms that, according to the IUPAC classification, are characteristic of nonporous layers. The calcium test has been performed in a climate chamber at 20 °C and 50% relative humidity to determine the intrinsic water vapor transmission rate (WVTR) of SiNx barriers deposited at 120 °C. Intrinsic WVTR values in the range of 10(-6) g/m2/day indicate excellent barrier properties for ALD SiNx layers as thin as 10 nm, competing with that of state-of-the-art plasma-enhanced chemical vapor-deposited SiNx layers of a few hundred nanometers in thickness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA