Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Adv ; 6(17): eaaz7610, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32494650

RESUMEN

The locally accumulated damage by tropical cyclones (TCs) can intensify substantially when these cyclones move more slowly. While some observational evidence suggests that TC motion might have slowed significantly since the mid-20th century (1), the robustness of the observed trend and its relation to anthropogenic warming have not been firmly established (2-4). Using large-ensemble simulations that directly simulate TC activity, we show that future anthropogenic warming can lead to a robust slowing of TC motion, particularly in the midlatitudes. The slowdown there is related to a poleward shift of the midlatitude westerlies, which has been projected by various climate models. Although the model's simulation of historical TC motion trends suggests that the attribution of the observed trends of TC motion to anthropogenic forcings remains uncertain, our findings suggest that 21st-century anthropogenic warming could decelerate TC motion near populated midlatitude regions in Asia and North America, potentially compounding future TC-related damages.

2.
Nat Commun ; 10(1): 3942, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31462643

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nat Commun ; 10(1): 635, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30733439

RESUMEN

Tropical cyclones that rapidly intensify are typically associated with the highest forecast errors and cause a disproportionate amount of human and financial losses. Therefore, it is crucial to understand if, and why, there are observed upward trends in tropical cyclone intensification rates. Here, we utilize two observational datasets to calculate 24-hour wind speed changes over the period 1982-2009. We compare the observed trends to natural variability in bias-corrected, high-resolution, global coupled model experiments that accurately simulate the climatological distribution of tropical cyclone intensification. Both observed datasets show significant increases in tropical cyclone intensification rates in the Atlantic basin that are highly unusual compared to model-based estimates of internal climate variations. Our results suggest a detectable increase of Atlantic intensification rates with a positive contribution from anthropogenic forcing and reveal a need for more reliable data before detecting a robust trend at the global scale.

4.
Nat Commun ; 10(1): 979, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30804348

RESUMEN

The original version of this Article contained an error in the second sentence of the first paragraph of the 'Quantile mapping' section of the Methods, which incorrectly read 'We primarily focus on results produced using an additive version of QDM26 by making use of R programming language code contained in the CRAN MBC package version 0.10-438.' The correct version states 'QDM29' in place of 'QDM26'. Also, the third sentence of the first paragraph of the 'Quantile mapping' section of the Methods originally incorrectly read 'As reported in Appendix A of Cannon et al.26 the additive version of QDM is functionally very similar to the equidistant CDF matching algorithm of Li et al.39.' The correct version states 'Cannon et al.29' in place of 'Cannon et al.26'. This has been corrected in both the PDF and HTML versions of the Article.

5.
Nat Commun ; 8: 14991, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28401886

RESUMEN

This study aims to understand the relative roles of external forcing versus internal climate variability in causing the observed Barents Sea winter sea ice extent (SIE) decline since 1979. We identify major discrepancies in the spatial patterns of winter Northern Hemisphere sea ice concentration trends over the satellite period between observations and CMIP5 multi-model mean externally forced response. The CMIP5 externally forced decline in Barents Sea winter SIE is much weaker than that observed. Across CMIP5 ensemble members, March Barents Sea SIE trends have little correlation with global mean surface air temperature trends, but are strongly anti-correlated with trends in Atlantic heat transport across the Barents Sea Opening (BSO). Further comparison with control simulations from coupled climate models suggests that enhanced Atlantic heat transport across the BSO associated with regional internal variability may have played a leading role in the observed decline in winter Barents Sea SIE since 1979.

6.
Nat Commun ; 8(1): 1695, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29167451

RESUMEN

Observed Atlantic major hurricane frequency has exhibited pronounced multidecadal variability since the 1940s. However, the cause of this variability is debated. Using observations and a coupled earth system model (GFDL-ESM2G), here we show that the decline of the Atlantic major hurricane frequency during 2005-2015 is associated with a weakening of the Atlantic Meridional Overturning Circulation (AMOC) inferred from ocean observations. Directly observed North Atlantic sulfate aerosol optical depth has not increased (but shows a modest decline) over this period, suggesting the decline of the Atlantic major hurricane frequency during 2005-2015 is not likely due to recent changes in anthropogenic sulfate aerosols. Instead, we find coherent multidecadal variations involving the inferred AMOC and Atlantic major hurricane frequency, along with indices of Atlantic Multidecadal Variability and inverted vertical wind shear. Our results provide evidence for an important role of the AMOC in the recent decline of Atlantic major hurricane frequency.

7.
Nat Commun ; 7: 13676, 2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27901045

RESUMEN

Global mean temperature over 1998 to 2015 increased at a slower rate (0.1 K decade-1) compared with the ensemble mean (forced) warming rate projected by Coupled Model Intercomparison Project 5 (CMIP5) models (0.2 K decade-1). Here we investigate the prospects for this slower rate to persist for a decade or more. The slower rate could persist if the transient climate response is overestimated by CMIP5 models by a factor of two, as suggested by recent low-end estimates. Alternatively, using CMIP5 models' warming rate, the slower rate could still persist due to strong multidecadal internal variability cooling. Combining the CMIP5 ensemble warming rate with internal variability episodes from a single climate model-having the strongest multidecadal variability among CMIP5 models-we estimate that the warming slowdown (<0.1 K decade-1 trend beginning in 1998) could persist, due to internal variability cooling, through 2020, 2025 or 2030 with probabilities 16%, 11% and 6%, respectively.

8.
Science ; 327(5964): 454-8, 2010 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-20093471

RESUMEN

Several recent models suggest that the frequency of Atlantic tropical cyclones could decrease as the climate warms. However, these models are unable to reproduce storms of category 3 or higher intensity. We explored the influence of future global warming on Atlantic hurricanes with a downscaling strategy by using an operational hurricane-prediction model that produces a realistic distribution of intense hurricane activity for present-day conditions. The model projects nearly a doubling of the frequency of category 4 and 5 storms by the end of the 21st century, despite a decrease in the overall frequency of tropical cyclones, when the downscaling is based on the ensemble mean of 18 global climate-change projections. The largest increase is projected to occur in the Western Atlantic, north of 20 degrees N.

9.
Proc Natl Acad Sci U S A ; 104(13): 5483-8, 2007 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-17360373

RESUMEN

Episodes of mass coral bleaching around the world in recent decades have been attributed to periods of anomalously warm ocean temperatures. In 2005, the sea surface temperature (SST) anomaly in the tropical North Atlantic that may have contributed to the strong hurricane season caused widespread coral bleaching in the Eastern Caribbean. Here, we use two global climate models to evaluate the contribution of natural climate variability and anthropogenic forcing to the thermal stress that caused the 2005 coral bleaching event. Historical temperature data and simulations for the 1870-2000 period show that the observed warming in the region is unlikely to be due to unforced climate variability alone. Simulation of background climate variability suggests that anthropogenic warming may have increased the probability of occurrence of significant thermal stress events for corals in this region by an order of magnitude. Under scenarios of future greenhouse gas emissions, mass coral bleaching in the Eastern Caribbean may become a biannual event in 20-30 years. However, if corals and their symbionts can adapt by 1-1.5 degrees C, such mass bleaching events may not begin to recur at potentially harmful intervals until the latter half of the century. The delay could enable more time to alter the path of greenhouse gas emissions, although long-term "committed warming" even after stabilization of atmospheric CO(2) levels may still represent an additional long-term threat to corals.


Asunto(s)
Aclimatación/fisiología , Antozoos/metabolismo , Antozoos/fisiología , Monitoreo del Ambiente/métodos , Eucariontes/fisiología , Efecto Invernadero , Animales , Región del Caribe , Clima , Ecosistema , Geografía , Dinámica Poblacional , Simbiosis/fisiología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA