Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(3): 037202, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35905335

RESUMEN

We theoretically demonstrate the spin swapping effect of band structure origin in centrosymmetric ferromagnets. It is mediated by an orbital degree of freedom but does not require inversion asymmetry or impurity spin-orbit scattering. Analytic and tight-binding models reveal that it originates mainly from k points where bands with different spins and different orbitals are nearly degenerate, and thus it has no counterpart in normal metals. First-principle calculations for centrosymmetric 3d transition-metal ferromagnets show that the spin swapping conductivity of band structure origin can be comparable in magnitude to the intrinsic spin Hall conductivity of Pt. Our theory generalizes transverse spin currents generated by ferromagnets and emphasizes the important role of the orbital degree of freedom in describing spin-orbit-coupled transport in centrosymmetric materials.

2.
Nat Mater ; 18(7): 685-690, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31133731

RESUMEN

Symmetry breaking is a fundamental concept that prevails in many branches of physics1-5. In magnetic materials, broken inversion symmetry induces the Dzyaloshinskii-Moriya interaction (DMI), which results in fascinating physical behaviours6-14 with the potential for application in future spintronic devices15-17. Here, we report the observation of a bulk DMI in GdFeCo amorphous ferrimagnets. The DMI is found to increase linearly with an increasing thickness of the ferrimagnetic layer, which is a clear signature of the bulk nature of DMI. We also found that the DMI is independent of the interface between the heavy metal and ferrimagnetic layer. This bulk DMI is attributed to an asymmetric distribution of the elemental content in the GdFeCo layer, with spatial inversion symmetry broken throughout the layer. We expect that our experimental identification of a bulk DMI will open up additional possibilities to exploit this interaction in a wide range of materials.

3.
Sci Rep ; 11(1): 20884, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686705

RESUMEN

Electrical conduction in magnetic materials depends on their magnetization configuration, resulting in various magnetoresistances (MRs). The microscopic mechanisms of MR have so far been attributed to either an intrinsic or extrinsic origin, yet the contribution and temperature dependence of either origin has remained elusive due to experimental limitations. In this study, we independently probed the intrinsic and extrinsic contributions to the anisotropic MR (AMR) of a permalloy film at varying temperatures using temperature-variable terahertz time-domain spectroscopy. The AMR induced by the scattering-independent intrinsic origin was observed to be approximately 1.5% at T = 16 K and is virtually independent of temperature. In contrast, the AMR induced by the scattering-dependent extrinsic contribution was approximately 3% at T = 16 K but decreased to 1.5% at T = 155 K, which is the maximum temperature at which the AMR can be resolved using THz measurements. Our results experimentally quantify the temperature-dependent intrinsic and extrinsic contributions to AMR, which can stimulate further theoretical research to aid the fundamental understanding of AMR.

4.
Nat Commun ; 12(1): 6710, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34795204

RESUMEN

The orbital Hall effect describes the generation of the orbital current flowing in a perpendicular direction to an external electric field, analogous to the spin Hall effect. As the orbital current carries the angular momentum as the spin current does, injection of the orbital current into a ferromagnet can result in torque on the magnetization, which provides a way to detect the orbital Hall effect. With this motivation, we examine the current-induced spin-orbit torques in various ferromagnet/heavy metal bilayers by theory and experiment. Analysis of the magnetic torque reveals the presence of the contribution from the orbital Hall effect in the heavy metal, which competes with the contribution from the spin Hall effect. In particular, we find that the net torque in Ni/Ta bilayers is opposite in sign to the spin Hall theory prediction but instead consistent with the orbital Hall theory, which unambiguously confirms the orbital torque generated by the orbital Hall effect. Our finding opens a possibility of utilizing the orbital current for spintronic device applications, and it will invigorate researches on spin-orbit-coupled phenomena based on orbital engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA