Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Development ; 143(20): 3674-3685, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27802135

RESUMEN

Harnessing epigenetic regulation is crucial for the efficient and proper differentiation of pluripotent stem cells (PSCs) into desired cell types. Histone H3 lysine 27 trimethylation (H3K27me3) functions as a barrier against cell differentiation through the suppression of developmental gene expression in PSCs. Here, we have generated human PSC (hPSC) lines in which genome-wide reduction of H3K27me3 can be induced by ectopic expression of the catalytic domain of the histone demethylase JMJD3 (called JMJD3c). We found that transient, forced demethylation of H3K27me3 alone triggers the upregulation of mesoendodermal genes, even when the culture conditions for the hPSCs are not changed. Furthermore, transient and forced expression of JMJD3c followed by the forced expression of lineage-defining transcription factors enabled the hPSCs to activate tissue-specific genes directly. We have also shown that the introduction of JMJD3c facilitates the differentiation of hPSCs into functional hepatic cells and skeletal muscle cells. These results suggest the utility of the direct manipulation of epigenomes for generating desired cell types from hPSCs for cell transplantation therapy and platforms for drug screenings.


Asunto(s)
Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Apoptosis/genética , Apoptosis/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Inmunoprecipitación de Cromatina , Expresión Génica Ectópica/genética , Expresión Génica Ectópica/fisiología , Epigénesis Genética/genética , Hepatocitos/metabolismo , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Humanos , Immunoblotting , Histona Demetilasas con Dominio de Jumonji/genética , Factor de Transcripción PAX3/genética , Factor de Transcripción PAX3/metabolismo , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Bioinformatics ; 33(15): 2314-2321, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28379368

RESUMEN

MOTIVATION: The analysis of RNA-Seq data from individual differentiating cells enables us to reconstruct the differentiation process and the degree of differentiation (in pseudo-time) of each cell. Such analyses can reveal detailed expression dynamics and functional relationships for differentiation. To further elucidate differentiation processes, more insight into gene regulatory networks is required. The pseudo-time can be regarded as time information and, therefore, single-cell RNA-Seq data are time-course data with high time resolution. Although time-course data are useful for inferring networks, conventional inference algorithms for such data suffer from high time complexity when the number of samples and genes is large. Therefore, a novel algorithm is necessary to infer networks from single-cell RNA-Seq during differentiation. RESULTS: In this study, we developed the novel and efficient algorithm SCODE to infer regulatory networks, based on ordinary differential equations. We applied SCODE to three single-cell RNA-Seq datasets and confirmed that SCODE can reconstruct observed expression dynamics. We evaluated SCODE by comparing its inferred networks with use of a DNaseI-footprint based network. The performance of SCODE was best for two of the datasets and nearly best for the remaining dataset. We also compared the runtimes and showed that the runtimes for SCODE are significantly shorter than for alternatives. Thus, our algorithm provides a promising approach for further single-cell differentiation analyses. AVAILABILITY AND IMPLEMENTATION: The R source code of SCODE is available at https://github.com/hmatsu1226/SCODE. CONTACT: hirotaka.matsumoto@riken.jp. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Diferenciación Celular/genética , Redes Reguladoras de Genes , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Algoritmos , Animales , Humanos , Ratones , Análisis de la Célula Individual/métodos
3.
Biochem Biophys Res Commun ; 490(2): 296-301, 2017 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-28610919

RESUMEN

Pluripotent human embryonic stem cells (hESCs) can differentiate into multiple cell lineages, thus, providing one of the best platforms to study molecular mechanisms during cell differentiation. Recently, we have reported rapid and efficient differentiation of hESCs into functional neurons by introducing a cocktail of synthetic mRNAs encoding five transcription factors (TFs): NEUROG1, NEUROG2, NEUROG3, NEUROD1, and NEUROD2. Here we further tested a possibility that even single transcription factors, when expressed ectopically, can differentiate hESCs into neurons. To this end, we established hESC lines in which each of these TFs can be overexpressed by the doxycycline-inducible piggyBac vector. The overexpression of any of these five TFs indeed caused a rapid and rather uniform differentiation of hESCs, which were identified as neurons based on their morphologies, qRT-PCR, and immunohistochemistry. Furthermore, calcium-imaging analyses and patch clamp recordings demonstrated that these differentiated cells are electrophysiologically functional. Interestingly, neural differentiations occurred despite the cell culture conditions that rather promote the maintenance of the undifferentiated state. These results indicate that over-expression of each of these five TFs can override the pluripotency-specific gene network and force hESCs to differentiate into neurons.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias Humanas/citología , Neuronas/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transgenes/genética , Células Cultivadas , Células Madre Embrionarias Humanas/metabolismo , Humanos , Neuronas/metabolismo
4.
Development ; 141(22): 4254-66, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25371362

RESUMEN

Upon removal of culture conditions that maintain an undifferentiated state, mouse embryonic stem cells (ESCs) differentiate into various cell types. Differentiation can be facilitated by forced expression of certain transcription factors (TFs), each of which can generally specify a particular developmental lineage. We previously established 137 mouse ESC lines, each of which carried a doxycycline-controllable TF. Among them, Sox9 has unique capacity: its forced expression accelerates differentiation of mouse ESCs into cells of all three germ layers. With the additional use of specific culture conditions, overexpression of Sox9 facilitated the generation of endothelial cells, hepatocytes and neurons from ESCs. Furthermore, Sox9 action increases formation of p21 (WAF1/CIP1), which then binds to the SRR2 enhancer of pluripotency marker Sox2 and inhibits its expression. Knockdown of p21 abolishes inhibition of Sox2 and Sox9-accelerated differentiation, and reduction of Sox2 2 days after the beginning of ESC differentiation can comparably accelerate mouse ESC formation of cells of three germ layers. These data implicate the involvement of the p21-Sox2 pathway in the mechanism of accelerated ESC differentiation by Sox9 overexpression. The molecular cascade could be among the first steps to program ESC differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Células Madre Embrionarias/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Estratos Germinativos/embriología , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción SOXB1/metabolismo , Análisis de Varianza , Animales , Western Blotting , Línea Celular , Inmunoprecipitación de Cromatina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Madre Embrionarias/metabolismo , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Estratos Germinativos/citología , Inmunohistoquímica , Ratones , Análisis por Micromatrices , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Transcripción SOX9/genética
5.
Nature ; 464(7290): 858-63, 2010 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-20336070

RESUMEN

Exceptional genomic stability is one of the hallmarks of mouse embryonic stem (ES) cells. However, the genes contributing to this stability remain obscure. We previously identified Zscan4 as a specific marker for two-cell embryo and ES cells. Here we show that Zscan4 is involved in telomere maintenance and long-term genomic stability in ES cells. Only 5% of ES cells express Zscan4 at a given time, but nearly all ES cells activate Zscan4 at least once during nine passages. The transient Zscan4-positive state is associated with rapid telomere extension by telomere recombination and upregulation of meiosis-specific homologous recombination genes, which encode proteins that are colocalized with ZSCAN4 on telomeres. Furthermore, Zscan4 knockdown shortens telomeres, increases karyotype abnormalities and spontaneous sister chromatid exchange, and slows down cell proliferation until reaching crisis by passage eight. Together, our data show a unique mode of genome maintenance in ES cells.


Asunto(s)
Células Madre Embrionarias/metabolismo , Inestabilidad Genómica , Telómero/genética , Telómero/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Proliferación Celular , Aberraciones Cromosómicas , Células Madre Embrionarias/citología , Células Madre Embrionarias/patología , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Cariotipificación , Meiosis/genética , Meiosis/fisiología , Ratones , Transporte de Proteínas , Recombinación Genética/genética , Intercambio de Cromátides Hermanas/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Regulación hacia Arriba
6.
J Pathol ; 233(3): 228-37, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24652535

RESUMEN

Recent evidence suggests that ovarian high-grade serous carcinoma (HGSC) originates from the epithelium of the fallopian tube. However, most mouse models are based on the previous prevailing view that ovarian cancer develops from the transformation of the ovarian surface epithelium. Here, we report the extensive histological and molecular characterization of the mogp-TAg transgenic mouse, which expresses the SV40 large T-antigen (TAg) under the control of the mouse müllerian-specific Ovgp-1 promoter. Histological analysis of the fallopian tubes of mogp-TAg mice identified a variety of neoplastic lesions analogous to those described as precursors to ovarian HGSC. We identified areas of normal-appearing p53-positive epithelium that are similar to 'p53 signatures' in the human fallopian tube. More advanced proliferative lesions with nuclear atypia and epithelial stratification were also identified that were morphologically and immunohistochemically reminiscent of human serous tubal intraepithelial carcinoma (STIC), a potential precursor of ovarian HGSC. Beside these non-invasive precursor lesions, we also identified invasive adenocarcinoma in the ovaries of 56% of the mice. Microarray analysis revealed several genes differentially expressed between the fallopian tube of mogp-TAg and wild-type (WT) C57BL/6. One of these genes, Top2a, which encodes topoisomerase IIα, was shown by immunohistochemistry to be concurrently expressed with elevated p53 and was specifically elevated in mouse STICs but not in the surrounding tissues. TOP2A protein was also found elevated in human STICs, low-grade and high-grade serous carcinoma. The mouse model reported here displays a progression from normal tubal epithelium to invasive HGSC in the ovary, and therefore closely simulates the current emerging model of human ovarian HGSC pathogenesis. This mouse therefore has the potential to be a very useful new model for elucidating the mechanisms of serous ovarian tumourigenesis, as well as for developing novel approaches for the prevention, diagnosis and therapy of this disease.


Asunto(s)
Adenocarcinoma/genética , Transformación Celular Neoplásica/genética , Trompas Uterinas/patología , Ingeniería Genética , Neoplasias Quísticas, Mucinosas y Serosas/genética , Neoplasias Ováricas/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Antígenos Transformadores de Poliomavirus/genética , Antígenos Transformadores de Poliomavirus/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Trompas Uterinas/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Glicoproteínas/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Clasificación del Tumor , Invasividad Neoplásica , Neoplasias Quísticas, Mucinosas y Serosas/metabolismo , Neoplasias Quísticas, Mucinosas y Serosas/patología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Proteínas de Unión a Poli-ADP-Ribosa , Regiones Promotoras Genéticas , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
7.
Proc Natl Acad Sci U S A ; 109(4): 1199-203, 2012 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-22223659

RESUMEN

Body temperature is maintained in a narrow range in mammals, primarily controlled by sweating. In humans, the dynamic thermoregulatory organ, comprised of 2-4 million sweat glands distributed over the body, can secrete up to 4 L of sweat per day, thereby making it possible to withstand high temperatures and endure prolonged physical stress (e.g., long-distance running). The genetic basis for sweat gland function, however, is largely unknown. We find that the forkhead transcription factor, FoxA1, is required to generate mouse sweating capacity. Despite continued sweat gland morphogenesis, ablation of FoxA1 in mice results in absolute anihidrosis (lack of sweating). This inability to sweat is accompanied by down-regulation of the Na-K-Cl cotransporter 1 (Nkcc1) and the Ca(2+)-activated anion channel Bestrophin 2 (Best2), as well as glycoprotein accumulation in gland lumens and ducts. Furthermore, Best2-deficient mice display comparable anhidrosis and glycoprotein accumulation. These findings link earlier observations that both sodium/potassium/chloride exchange and Ca(2+) are required for sweat production. FoxA1 is inferred to regulate two corresponding features of sweat secretion. One feature, via Best2, catalyzes a bicarbonate gradient that could help to drive calcium-associated ionic transport; the other, requiring Nkcc1, facilitates monovalent ion exchange into sweat. These mechanistic components can be pharmaceutical targets to defend against hyperthermia and alleviate defective thermoregulation in the elderly, and may provide a model relevant to more complex secretory processes.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Canales de Cloruro/metabolismo , Proteínas del Ojo/metabolismo , Regulación de la Expresión Génica/fisiología , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Sudoración/fisiología , Análisis de Varianza , Animales , Bestrofinas , Western Blotting , Cruzamientos Genéticos , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Galactósidos , Perfilación de la Expresión Génica , Genotipo , Factor Nuclear 3-alfa del Hepatocito/genética , Indoles , Ratones , Modelos Biológicos , Reacción en Cadena en Tiempo Real de la Polimerasa , Miembro 2 de la Familia de Transportadores de Soluto 12 , Sudoración/genética
8.
Nat Cell Biol ; 9(6): 625-35, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17515932

RESUMEN

The pluripotency of embryonic stem (ES) cells is thought to be maintained by a few key transcription factors, including Oct3/4 and Sox2. The function of Oct3/4 in ES cells has been extensively characterized, but that of Sox2 has yet to be determined. Sox2 can act synergistically with Oct3/4 in vitro to activate Oct-Sox enhancers, which regulate the expression of pluripotent stem cell-specific genes, including Nanog, Oct3/4 and Sox2 itself. These findings suggest that Sox2 is required by ES cells for its Oct-Sox enhancer activity. Using inducible Sox2-null mouse ES cells, we show that Sox2 is dispensable for the activation of these Oct-Sox enhancers. In contrast, we demonstrate that Sox2 is necessary for regulating multiple transcription factors that affect Oct3/4 expression and that the forced expression of Oct3/4 rescues the pluripotency of Sox2-null ES cells. These results indicate that the essential function of Sox2 is to stabilize ES cells in a pluripotent state by maintaining the requisite level of Oct3/4 expression.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Células Madre Pluripotentes/metabolismo , Transactivadores/metabolismo , Animales , Línea Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Desarrollo Embrionario/fisiología , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Proteínas de Transporte de Catión Orgánico/genética , Factores de Transcripción SOXB1 , Transactivadores/genética , Factores de Transcripción/genética , Activación Transcripcional/genética , Regulación hacia Arriba/genética
9.
DNA Res ; 31(1)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38153767

RESUMEN

The Zinc finger and SCAN domain containing 4 (ZSCAN4) protein, expressed transiently in pluripotent stem cells, gametes, and early embryos, extends telomeres, enhances genome stability, and improves karyotypes in mouse embryonic stem (mES) cells. To gain insights into the mechanism of ZSCAN4 function, we identified genome-wide binding sites of endogenous ZSCAN4 protein using ChIP-seq technology in mouse and human ES cells, where the expression of endogenous ZSCAN4 was induced by treating cells with retinoic acids or by overexpressing DUX4. We revealed that both mouse and human ZSCAN4 bind to the TGCACAC motif located in CA/TG microsatellite repeats, which are known to form unstable left-handed duplexes called Z-DNA that can induce double-strand DNA breaks and mutations. These ZSCAN4 binding sites are mostly located in intergenic and intronic regions of the genomes. By generating ZSCAN4 knockout in human ES cells, we showed that ZSCAN4 does not seem to be involved in transcriptional regulation. We also found that ectopic expression of mouse ZSCAN4 enhances the suppression of chromatin at ZSCAN4-binding sites. These results together suggest that some of the ZSCAN4 functions are mediated by binding to the error-prone regions in mouse and human genomes.


Asunto(s)
Genoma Humano , Factores de Transcripción , Humanos , Animales , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Dedos de Zinc , Repeticiones de Microsatélite , Proteínas de Unión al ADN/genética
10.
J Biol Chem ; 287(38): 32288-97, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22833670

RESUMEN

Endocannabinoid signaling plays key roles in multiple female reproductive events. Previous studies have shown an interesting phenomenon, that mice with either silenced or elevated endocannabinoid signaling via Cnr1 encoding CB(1) show similar defects in several pregnancy events, including preimplantation embryo development. To unravel the downstream signaling of this phenomenon, microarray studies were performed using RNAs collected from WT, Cnr1(-/-), and Faah(-/-) mouse blastocysts on day 4 of pregnancy. The results indicate that about 100 genes show unidirectional changes under either silenced or elevated anandamide signaling via CB(1). Functional enrichment analysis of the microarray data predicted that multiple biological functions and pathways are affected under aberrant endocannabinoid signaling. Among them, genes enriched in cell migration are suppressed in Cnr1(-/-) or Faah(-/-) blastocysts. Cell migration assays validated the prediction of functional enrichment analysis that cell mobility and spreading of either Cnr1(-/-) or Faah(-/-) trophoblast stem cells are compromised. Either silenced or elevated endocannabinoid signaling via CB(1) causes similar changes in downstream targets in preimplantation embryos and trophoblast stem cells. This study provides evidence that a tightly regulated endocannabinoid signaling is critical to normal preimplantation embryo development and migration of trophoblast stem cells.


Asunto(s)
Endocannabinoides/metabolismo , Silenciador del Gen , Receptor Cannabinoide CB1/metabolismo , Trofoblastos/metabolismo , Animales , Blastocisto/citología , Movimiento Celular , Implantación del Embrión , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Transducción de Señal , Células Madre/citología , Cicatrización de Heridas
11.
Am J Physiol Gastrointest Liver Physiol ; 304(12): G1103-16, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23599043

RESUMEN

We have recently identified the zinc finger and SCAN domain containing 4 (Zscan4), which is transiently expressed and regulates telomere elongation and genome stability in mouse embryonic stem (ES) cells. The aim of this study was to examine the expression of ZSCAN4 in the adult pancreas and elucidate the role of ZSCAN4 in tissue inflammation and subsequent regeneration. The expression of ZSCAN4 and other progenitor or differentiated cell markers in the human pancreas was immunohistochemically examined. Pancreas sections of alcoholic or autoimmune pancreatitis patients before and under maintenance corticosteroid treatment were used in this study. In the adult human pancreas a small number of ZSCAN4-positive (ZSCAN4⁺) cells are present among cells located in the islets of Langerhans, acini, ducts, and oval-shaped cells. These cells not only express differentiated cell markers for each compartment of the pancreas but also express other tissue stem/progenitor cell markers. Furthermore, the number of ZSCAN4⁺ cells dramatically increased in patients with chronic pancreatitis, especially in the pancreatic tissues of autoimmune pancreatitis actively regenerating under corticosteroid treatment. Interestingly, a number of ZSCAN4⁺ cells in the pancreas of autoimmune pancreatitis returned to the basal level after 1 yr of maintenance corticosteroid treatment. In conclusion, coexpression of progenitor cell markers and differentiated cell markers with ZSCAN4 in each compartment of the pancreas may indicate the presence of facultative progenitors for both exocrine and endocrine cells in the adult pancreas.


Asunto(s)
Células Acinares/metabolismo , Proteínas de Unión al ADN/metabolismo , Islotes Pancreáticos/metabolismo , Páncreas/metabolismo , Pancreatitis Crónica/metabolismo , Células Madre/metabolismo , Factores de Transcripción/metabolismo , Animales , Biomarcadores/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Páncreas/patología , Pancreatitis/metabolismo , Factores de Transcripción/genética , Transcripción Genética
12.
Biol Reprod ; 88(1): 2, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23136301

RESUMEN

The antral compartment in the ovary consists of two populations of oocytes that differ by their ability to resume meiosis and to develop to the blastocyst stage. For reasons still not entirely clear, antral oocytes termed surrounded nucleolus (SN; 70% of the population of antral oocytes) develop to the blastocyst stage, whereas those called not-surrounded nucleolus (NSN) arrest at two cells. We profiled transcriptomic, proteomic, and morphological characteristics of antral oocytes and observed that NSN oocyte arrest is associated with lack of cytoplasmic lattices coincident with reduced expression of MATER and ribosomal proteins. Cytoplasmic lattices have been shown to store maternally derived mRNA and ribosomes in mammalian oocytes and embryos, and MATER has been shown to be required for cytoplasmic lattice formation. Thus, we isolated antral oocytes from a Mater(tm/tm) mouse and we observed that 84% of oocytes are of the NSN type. Our results provide the first molecular evidence to account for inability of NSN-derived embryos to progress beyond the two-cell stage; these results may be relevant to naturally occurring preimplantation embryo demise in mammals.


Asunto(s)
Oocitos/citología , Oocitos/metabolismo , Animales , Antígenos/genética , Antígenos/metabolismo , Blastocisto/citología , Blastocisto/fisiología , División Celular , Proteínas del Huevo/genética , Proteínas del Huevo/metabolismo , Femenino , Regulación de la Expresión Génica , Lípidos/química , Ratones , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Oocitos/química , Transcriptoma
13.
PLoS Biol ; 8(5): e1000379, 2010 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-20520791

RESUMEN

ES cells are defined as self-renewing, pluripotent cell lines derived from early embryos. Cultures of ES cells are also characterized by the expression of certain markers thought to represent the pluripotent state. However, despite the widespread expression of key markers such as Oct4 and the appearance of a characteristic undifferentiated morphology, functional ES cells may represent only a small fraction of the cultures grown under self-renewing conditions. Thus phenotypically "undifferentiated" cells may consist of a heterogeneous population of functionally distinct cell types. Here we use a transgenic allele designed to detect low level transcription in the primitive endoderm lineage as a tool to identify an immediate early endoderm-like ES cell state. This reporter employs a tandem array of internal ribosomal entry sites to drive translation of an enhanced Yellow Fluorescent Protein (Venus) from the transcript that normally encodes for the early endodermal marker Hex. Expression of this Venus transgene reports on single cells with low Hex transcript levels and reveals the existence of distinct populations of Oct4 positive undifferentiated ES cells. One of these cells types, characterized by both the expression of the Venus transgene and the ES cells marker SSEA-1 (V(+)S(+)), appears to represent an early step in primitive endoderm specification. We show that the fraction of cells present within this state is influenced by factors that both promote and suppress primitive endoderm differentiation, but conditions that support ES cell self-renewal prevent their progression into differentiation and support an equilibrium between this state and at least one other that resembles the Nanog positive inner cell mass of the mammalian blastocysts. Interestingly, while these subpopulations are equivalently and clonally interconvertible under self-renewing conditions, when induced to differentiate both in vivo and in vitro they exhibit different behaviours. Most strikingly when introduced back into morulae or blastocysts, the V(+)S(+) population is not effective at contributing to the epiblast and can contribute to the extra-embryonic visceral and parietal endoderm, while the V(-)S(+) population generates high contribution chimeras. Taken together our data support a model in which ES cell culture has trapped a set of interconvertible cell states reminiscent of the early stages in blastocyst differentiation that may exist only transiently in the early embryo.


Asunto(s)
Biomarcadores/metabolismo , Diferenciación Celular , Células Madre Embrionarias/citología , Endodermo/citología , Regulación del Desarrollo de la Expresión Génica , Proteínas Luminiscentes/metabolismo , Animales , Blastocisto/citología , Blastocisto/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Linaje de la Célula , Células Cultivadas , Células Madre Embrionarias/fisiología , Endodermo/metabolismo , Endodermo/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Antígeno Lewis X/genética , Antígeno Lewis X/metabolismo , Proteínas Luminiscentes/genética , Ratones , Mórula , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transgenes
14.
Stem Cell Res Ther ; 14(1): 242, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37679843

RESUMEN

BACKGROUND: Melanocytes are an essential part of the epidermis, and their regeneration has received much attention because propagation of human adult melanocytes in vitro is too slow for clinical use. Differentiation from human pluripotent stem cells to melanocytes has been reported, but the protocols to produce them require multiple and complex differentiation steps. METHOD: We differentiated human embryonic stem cells (hESCs) that transiently express JMJD3 to pigmented cells. We investigated whether the pigmented cells have melanocytic characteristics and functions by qRT-PCR, immunocytochemical analysis and flow cytometry. We also investigated their biocompatibility by injecting the cells into immunodeficient mice for clinical use. RESULT: We successfully differentiated and established a pure culture of melanocytes. The melanocytes maintained their growth rate for a long time, approximately 200 days, and were functional. They exhibited melanogenesis and transfer of melanin to peripheral keratinocytes. Moreover, melanocytes simulated the developmental processes from melanoblasts to melanocytes. The melanocytes had high engraftability and biocompatibility in the immunodeficient mice. CONCLUSION: The robust generation of functional and long-lived melanocytes are key to developing clinical applications for the treatment of pigmentary skin disorders.


Asunto(s)
Expresión Génica Ectópica , Células Madre Pluripotentes , Adulto , Animales , Humanos , Ratones , Células Epidérmicas , Epidermis , Melanocitos
15.
iScience ; 26(4): 106335, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36968065

RESUMEN

Intradermal delivery of self-replicating RNA (srRNA) is a promising vaccine platform. We have developed an srRNA that functions optimally at around 33°C (skin temperature) and is inactivated at or above 37°C (core body temperature) as a safety switch. This temperature-controllable srRNA (c-srRNA), when tested as an intradermal vaccine against SARS-CoV-2, functions when injected naked without lipid nanoparticles. Unlike most currently available vaccines, c-srRNA vaccines predominantly elicit cellular immunity with little or no antibody production. Interestingly, c-srRNA-vaccinated mice produced antigen-specific antibodies upon subsequent stimulation with antigen protein. Antigen-specific antibodies were also produced when B cell stimulation using antigen protein was followed by c-srRNA booster vaccination. We have thus designed a pan-coronavirus booster vaccine that incorporates both spike-receptor-binding domains as viral surface proteins and evolutionarily conserved nucleoproteins as viral internal proteins, from both severe acute respiratory syndrome coronavirus 2 and Middle East respiratory syndrome coronavirus. c-srRNA may provide a route to activate cellular immunity against a wide variety of pathogens.

16.
bioRxiv ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37873361

RESUMEN

The DNA-binding activities of transcription factors (TFs) are influenced by both intrinsic sequence preferences and extrinsic interactions with cell-specific chromatin landscapes and other regulatory proteins. Disentangling the roles of these binding determinants remains challenging. For example, the FoxA subfamily of Forkhead domain (Fox) TFs are known pioneer factors that can bind to relatively inaccessible sites during development. Yet FoxA TF binding also varies across cell types, pointing to a combination of intrinsic and extrinsic forces guiding their binding. While other Forkhead domain TFs are often assumed to have pioneering abilities, how sequence and chromatin features influence the binding of related Fox TFs has not been systematically characterized. Here, we present a principled approach to compare the relative contributions of intrinsic DNA sequence preference and cell-specific chromatin environments to a TF's DNA-binding activities. We apply our approach to investigate how a selection of Fox TFs (FoxA1, FoxC1, FoxG1, FoxL2, and FoxP3) vary in their binding specificity. We over-express the selected Fox TFs in mouse embryonic stem cells, which offer a platform to contrast each TF's binding activity within the same preexisting chromatin background. By applying a convolutional neural network to interpret the Fox TF binding patterns, we evaluate how sequence and preexisting chromatin features jointly contribute to induced TF binding. We demonstrate that Fox TFs bind different DNA targets, and drive differential gene expression patterns, even when induced in identical chromatin settings. Despite the association between Forkhead domains and pioneering activities, the selected Fox TFs display a wide range of affinities for preexiting chromatin states. Using sequence and chromatin feature attribution techniques to interpret the neural network predictions, we show that differential sequence preferences combined with differential abilities to engage relatively inaccessible chromatin together explain Fox TF binding patterns at individual sites and genome-wide.

17.
Vaccines (Basel) ; 11(12)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38140172

RESUMEN

mRNA vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have played a key role in reducing morbidity and mortality from coronavirus disease 2019 (COVID-19). We conducted a double-blind, placebo-controlled phase I/II trial to evaluate the safety, tolerability, and immunogenicity of EXG-5003, a two-dose, controllable self-replicating RNA vaccine against SARS-CoV-2. EXG-5003 encodes the receptor binding domain (RBD) of SARS-CoV-2 and was administered intradermally without lipid nanoparticles (LNPs). The participants were followed for 12 months. Forty healthy participants were enrolled in Cohort 1 (5 µg per dose, n = 16; placebo, n = 4) and Cohort 2 (25 µg per dose, n = 16; placebo, n = 4). No safety concerns were observed with EXG-5003 administration. SARS-CoV-2 RBD antibody titers and neutralizing antibody titers were not elevated in either cohort. Elicitation of antigen-specific cellular immunity was observed in the EXG-5003 recipients in Cohort 2. At the 12-month follow-up, participants who had received an approved mRNA vaccine (BNT162b2 or mRNA-1273) >1 month after receiving the second dose of EXG-5003 showed higher cellular responses compared with equivalently vaccinated participants in the placebo group. The findings suggest a priming effect of EXG-5003 on the long-term cellular immunity of approved SARS-CoV-2 mRNA vaccines.

18.
Nat Commun ; 14(1): 6725, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872153

RESUMEN

The resolution of SARS-CoV-2 replication hinges on cell-mediated immunity, wherein CD8+ T cells play a vital role. Nonetheless, the characterization of the specificity and TCR composition of CD8+ T cells targeting non-spike protein of SARS-CoV-2 before and after infection remains incomplete. Here, we analyzed CD8+ T cells recognizing six epitopes from the SARS-CoV-2 nucleocapsid (N) protein and found that SARS-CoV-2 infection slightly increased the frequencies of N-recognizing CD8+ T cells but significantly enhanced activation-induced proliferation compared to that of the uninfected donors. The frequencies of N-specific CD8+ T cells and their proliferative response to stimulation did not decrease over one year. We identified the N222-230 peptide (LLLDRLNQL, referred to as LLL thereafter) as a dominant epitope that elicited the greatest proliferative response from both convalescent and uninfected donors. Single-cell sequencing of T cell receptors (TCR) from LLL-specific CD8+ T cells revealed highly restricted Vα gene usage (TRAV12-2) with limited CDR3α motifs, supported by structural characterization of the TCR-LLL-HLA-A2 complex. Lastly, transcriptome analysis of LLL-specific CD8+ T cells from donors who had expansion (expanders) or no expansion (non-expanders) after in vitro stimulation identified increased chromatin modification and innate immune functions of CD8+ T cells in non-expanders. These results suggests that SARS-CoV-2 infection induces LLL-specific CD8+ T cell responses with a restricted TCR repertoire.


Asunto(s)
Linfocitos T CD8-positivos , COVID-19 , Humanos , SARS-CoV-2/metabolismo , Epítopos de Linfocito T , Receptores de Antígenos de Linfocitos T/metabolismo , Nucleocápside/metabolismo , Glicoproteína de la Espiga del Coronavirus
19.
STAR Protoc ; 3(2): 101360, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35516845

RESUMEN

Here we describe a protocol to obtain highly pure cardiomyocytes and neurons from human induced pluripotent stem cells (hiPSCs) via metabolic selection processes. Compared to conventional purification protocols, this approach is easier to perform and scale up and more cost-efficient. The protocol can be applied to hiPSCs and human embryonic stem cells. For complete details on the use and execution of this protocol, please refer to Tohyama et al. (2016) and Tanosaki et al. (2020).


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Diferenciación Celular/fisiología , Ácidos Grasos/farmacología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/fisiología , Neuronas
20.
bioRxiv ; 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36263074

RESUMEN

Intradermal delivery of self-replicating RNA (srRNA) is a promising vaccine platform. Considering that human skin temperature is around 33°C, lower than core body temperature of 37°C, we have developed an srRNA that functions optimally at skin temperature and is inactivated at or above 37°C as a safety switch. This temperature- c ontrollable srRNA (c-srRNA), when tested as an intradermal vaccine against SARS-CoV-2, functions when injected naked without lipid nanoparticles. Unlike most currently available vaccines, c-srRNA vaccines predominantly elicit cellular immunity with little or no antibody production. Interestingly, c-srRNA-vaccinated mice produced antigen-specific antibodies upon subsequent stimulation with antigen protein. Antigen-specific antibodies were also produced when B-cell stimulation using antigen protein was followed by c-srRNA booster vaccination. Using c-srRNA, we have designed a pan-coronavirus booster vaccine that incorporates both spike receptor binding domains as viral surface proteins and evolutionarily conserved nucleoproteins as viral non-surface proteins, from both SARS-CoV-2 and MERS-CoV. It can thereby potentially immunize against SARS-CoV-2, SARS-CoV, MERS-CoV, and their variants. c-srRNA may provide a route to activate cellular immunity against a wide variety of pathogens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA