Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Am Chem Soc ; 146(23): 16332-16339, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38813992

RESUMEN

Bending inherently planar π-cores consisting of only six-membered rings has traditionally been challenging because a powerful transformation is required to compensate for the significant strain energy associated with bending. Herein, we demonstrate that sulfur extrusion can achieve substantial molecular bending of a perylene structure to form a substructure of a Vögtle belt, a proposed yet hitherto elusive carbon nanotube fragment. Bent perylene bisimide (PBI) derivatives were synthesized through a double-sulfur-extrusion reaction from the corresponding sulfur-containing V-shaped precursors with an internal alkyl tether. The effect of bending the inherently planar PBI core, which is a recent topic of interest for the design of advanced organic electronic and optoelectronic materials, was investigated systematically. Increasing the curvature leads to a red shift in the absorption and emission spectra, while the fluorescence quantum yields remain high. This stands in contrast with the nonemissive features of previously reported nonplanar PBI derivatives based on conjugative tethers. Detailed photophysical measurements indicated that the increasing curvature with shorter alkyl tethers (i) slightly facilitates intersystem crossing and (ii) significantly suppresses the internal conversion in the excited state of the present bent PBI derivatives. The latter characteristics originate from the restricted dynamic motion associated with the charge-transfer (CT) character between the core chromophores and the N-aryl units.

2.
Angew Chem Int Ed Engl ; 63(8): e202315747, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38179830

RESUMEN

A series of ferrocene(Fc)-bridged pentacene(Pc)-dimers [Fc-Ph(2,n)-(Pc)2 : n=number of phenylene spacers] were synthesized to examine the tortional motion effect of Fc-terminated phenylene linkers on strongly coupled quintet multiexciton (5 TT) formation through intramolecular singlet fission (ISF). Fc-Ph(2,4)-(Pc)2 has a relatively small electronic coupling and large conformational flexibility according to spectroscopic and theoretical analyses. Fc-Ph(2,4)-(Pc)2 exhibits a high-yield 5 TT together with quantitative singlet TT (1 TT) generation through ISF. This demonstrates a much more efficient ISF than those of other less flexible Pc dimers. The activation entropy in 1 TT spin conversion of Fc-Ph(2,4)-(Pc)2 is larger than those of the other systems due to the larger conformational flexibility associated with the torsional motion of the linkers. The torsional motion of linkers in 1 TT is attributable to weakened metal-ligand bonding in the Fc due to hybridization of the hole level of Pc to Fc in 1 TT unpaired orbitals.

3.
Chemistry ; 29(62): e202302413, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37612241

RESUMEN

Herein, we report the synthesis of two "partially embedded fused-dihydropyridazine N-aryl aza[5]helicene derivatives" (PDHs) and the demonstration of their intrinsic photo-triggered multi-functional properties based on a Kekulé biradical structure. Introducing bulky electron-withdrawing trifluoromethyl or pentafluoroethyl groups into the aza[5]helicene framework (PDH-CF3 and -C2 F5 ) gives PDH axial chirality based on the helicity of the P and M forms, even at room temperature. Upon photo-irradiation of PDH-CF3 in a frozen solution, an ESR signal from the triplet biradical with zero-field splitting values, generated by N-N bond dissociation, was observed. However, when the irradiation was turned off, the ESR signal became silent, thus indicating the existence of two equilibria: between the biradical and quinoidal forms based on the Kekulé structure, and between N-N bond cleavage and recombination. The observed photo- and thermally induced behaviors indicate that T-type photochromic molecules are involved in the photoisomerization mechanism involving the two equilibria. Inspired by the photoisomerization, chirality control of PDH by photoracemization was achieved. Multiple functionalities, such as T-type photochromism, photo-excitation-mediated triplet biradical formation, and photoracemization, which are attributed to the "partially embedded dihydropyridazine" structure, are demonstrated.

4.
Chemistry ; 29(62): e202303311, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37873888

RESUMEN

Invited for the cover of this issue are the groups of Kazuteru Usui and Satoru Karasawa at Showa Pharmaceutical University and Yasuhiro Kobori of Kobe University. The image depicts chirality control of helical compounds through cycles of photocleavage and recombination under sunlight with a "Jack and the Beanstalk" motif. Read the full text of the article at 10.1002/chem.202302413.

5.
Angew Chem Int Ed Engl ; 62(8): e202217704, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36578175

RESUMEN

We newly synthesized a series of homo- and hetero-tetracene (Tc) oligomers to propose a molecular design strategy for the efficient exciton transport in linear oligomers by promoting correlated triplet pair (TT) dissociation and controlling sequential exciton trapping process of individual doubled triplet excitons (T+T) by intramolecular singlet fission. First, entropic gain effects on the number of Tc units are examined by comparing Tc-homo-oligomers [(Tc)n : n=2, 4, 6]. Then, a comparison of (Tc)n and Tc-hetero-oligomer [TcF3 -(Tc)4 -TcF3 ] reveals the vibronic coupling effect for entropic gain. Observed entropic effects on the T+T formation indicated that the exciton migration is rationalized by number of possible TT states increased both by increasing the number of Tc units and by the vibronic levels at the terminal TcF3 units. Finally, we successfully observed high-yield exciton trapping process (trapped triplet yield: ΦTrT =176 %).

6.
J Am Chem Soc ; 144(14): 6566-6574, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35357152

RESUMEN

We developed organocatalyst systems to promote the cleavage of stable C-H bonds, such as formyl, α-hydroxy, and benzylic C-H bonds, through a hydrogen atom transfer (HAT) process without the use of exogenous photosensitizers. An electronically tuned thiophosphoric acid, 7,7'-OMe-TPA, was assembled with substrate or co-catalyst N-heteroaromatics through hydrogen bonding and π-π interactions to form electron donor-acceptor (EDA) complexes. Photoirradiation of the EDA complex induced stepwise, sequential single-electron transfer (SET) processes to generate a HAT-active thiyl radical. The first SET was from the electron-rich naphthyl group of 7,7'-OMe-TPA to the protonated N-heteroaromatics and the second proton-coupled SET (PCET) from the thiophosphoric acid moiety of 7,7'-OMe-TPA to the resulting naphthyl radical cation. Spectroscopic studies and theoretical calculations characterized the stepwise SET process mediated by short-lived intermediates. This organocatalytic HAT system was applied to four different carbon-hydrogen (C-H) functionalization reactions, hydroxyalkylation and alkylation of N-heteroaromatics, acceptorless dehydrogenation of alcohols, and benzylation of imines, with high functional group tolerance.


Asunto(s)
Hidrógeno , Protones , Carbono/química , Transporte de Electrón , Electrones , Hidrógeno/química , Enlace de Hidrógeno
7.
Langmuir ; 38(24): 7365-7382, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35675205

RESUMEN

Organic photovoltaics (OPVs) are promising solutions for renewable energy and sustainable technologies and have attracted much attention in recent years. Two types of organic semiconductors are used as donor materials to fabricate OPV cells. One type is a photoconductive polymer, and the other type is a small-molecule-based compound. The discovery of a bulk-heterojunction (BHJ) structure using a mixture of p- and n-type organic semiconductors has dramatically increased the power conversion efficiency (PCE) of OPV cells. In this feature article, we review our recent studies on organic BHJ thin films and OPVs by using advanced time-resolved spectroscopic techniques. Two topics regarding the microscopic behaviors of the charge carriers are discussed. The first topic is focused on how to quantify the local mobility of the charge carriers. Here, we discuss charge carrier dynamics in diketopyrrolopyrrole-linked tetrabenzoporphyrin (DPP-BP) BHJ thin films studied by time-resolved terahertz spectroscopy on a subpicosecond to several tens of picoseconds time scale and by transient photocurrent measurements on a microsecond time scale. The second topic concerns the spin configuration and interaction of the electron and hole of the polaron pairs in polymer-based BHJ thin films and OPV cells studied by the time-resolved electron paramagnetic resonance method, time-resolved simultaneous optical and electrical detection, and measurement of the magnetoconductance effect.

8.
Photochem Photobiol Sci ; 21(10): 1781-1791, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35776411

RESUMEN

Zinc oxide (ZnO) nanocrystals (NCs) exhibit photochromic reactions under specific conditions upon ultraviolet light irradiation. Since the color is originated from the excited electrons at the conduction band of ZnO NCs, the photoinduced absorption is observed only in the solution with hole acceptors under inert conditions. ZnO is earth-abundant and less toxic than many other substances, and has been widely used in various industrial fields. If the photochromic reaction of ZnO can be observed consistently under ambient conditions, the material may pave the way for large-scale photochromic applications such as in pigments, windows, and building materials in addition to conventional photochromic applications. In this study, we synthesize hydrophilic ZnO NCs and observe the solid-state photochromic reactions in the visible to mid-infrared regions even in humid-air conditions. We reveal that the coloration of powders of ZnO NCs under ambient conditions originates mainly from two factors: (1) charge separation induced by hole trapping by water molecules adsorbed on the surface of NCs, and (2) deceleration of the reactions involving the electrons in the conduction band of ZnO NCs with molecular oxygen and the adsorbed water molecules.


Asunto(s)
Nanopartículas , Óxido de Zinc , Óxido de Zinc/química , Polvos , Nanopartículas/química , Agua , Oxígeno
9.
J Am Chem Soc ; 143(5): 2239-2249, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33430582

RESUMEN

This paper reports on durable and nearly temperature-independent (at 298-328 K) T-type photochromism of colloidal Cu-doped ZnS nanocrystals (NCs). The color of Cu-doped ZnS NC powder changes from pale yellow to dark gray by UV light irradiation, and the color changes back to pale yellow on a time scale of several tens of seconds to minutes after stopping the light irradiation, while the decoloration reaction is accelerated to submillisecond in solutions. This decoloration reaction is much faster than those of conventional inorganic photochromic materials. The origin of the reversible photoinduced coloration is revealed to be a strong optical transition involving a delocalized surface hole which survives over a minute after escaping from intraparticle carrier recombination due to electron-hopping dissociation. ZnS NCs can be easily prepared in a water-mediated one-pot synthesis and are less toxic. Therefore, they are promising for large-scale photochromic applications such as windows and building materials in addition to conventional photochromic applications. Moreover, the present study demonstrates the importance of excited carrier dynamics and trap depths, resulting in coloration over minutes not only for photochromic nanomaterials but also for various advanced photofunctional materials, such as long persistent luminescent materials and photocatalytic nanomaterials.

10.
J Am Chem Soc ; 141(37): 14720-14727, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31529955

RESUMEN

Although tetracene (Tc) is well-known as a good candidate for singlet fission (SF), the number of high-yield and long-lived triplet excited states through SF is extremely limited because of the relative acceleration of the reverse triplet-triplet annihilation (TTA) considering the energy matching between a singlet and two triplet states. Systematic control of electronic interactions between two neighboring units using conventional covalent linkages and molecular assembly methods to optimize these kinetic processes is quite difficult because of the complicated synthesis and random orientations. In this study, we propose a novel supramolecular strategy utilizing mixed self-assembled monolayers (SAMs) with two different chain lengths. Specifically, mixed Tc-SAMs on gold nanoclusters, which are prepared using Tc-modified heterodisulfides with two different chain lengths, attain high-yield SF (ΦSF ≈ 90%) and individual triplet yields (ΦΤ ≈ 160%). The obtained ΦSF is the highest value among Tc derivatives in homogeneous solution to the best of our knowledge.

11.
J Org Chem ; 83(16): 9381-9390, 2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-30005575

RESUMEN

Carbon radicals are reactive species useful in various organic transformations. The C-X bond cleavage of organohalides by photoirradiation is a common method to generate carbon radicals in a controlled fashion. The use of organochloride substrates is still a formidable challenge due to the low reduction potential and the high dissociation energy of the C-Cl bond. In this report, we address these issues by using a nonmetal organic molecule with a relatively simple structure as a photocatalyst. In this catalyst (bis(dimethylamino)carbazole), the amino groups increase both the HOMO and LUMO energy levels, especially in the former. As a result, compared to the parent molecule, the new catalyst shows experimentally red-shifted absorption in the visible region and forms an excited state with better reducing capability. This photocatalyst was used in the reduction of unactivated aryl chlorides and alkyl chlorides in the presence of hydrogen atom donor at room temperature. The catalytic system can also be applied to the coupling of aryl chlorides with electron-rich arene and heteroarenes to affect the C-C bond-forming reactions. Our mechanistic study results support the assumption that carbon radicals are formed from the organochlorides via a single-electron-transfer step.

12.
Angew Chem Int Ed Engl ; 56(19): 5299-5303, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28382649

RESUMEN

The higher-order structures of semiconductor-based photocatalysts play crucial roles in their physicochemical properties for efficient light-to-energy conversion. A novel perovskite SrTiO3 mesocrystal superstructure with well-defined orientation of assembled cubic nanocrystals was synthesized by topotactic epitaxy from TiO2 mesocrystals through a facile hydrothermal treatment. The SrTiO3 mesocrystal exhibits three times the efficiency for the hydrogen evolution of conventional disordered systems in alkaline aqueous solution. It also exhibits a high quantum yield of 6.7 % at 360 nm in overall water splitting and even good durability up to 1 day. Temporal and spatial spectroscopic observations revealed that the synergy of the efficient electron flow along the internal nanocube network and efficient collection at the larger external cubes produces remarkably long-lived charges for enhanced photocatalysis.

13.
J Am Chem Soc ; 138(18): 5879-85, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27082279

RESUMEN

To shed a light on fundamental molecular functions of photoinduced charge conductions by organic photovoltaic materials, it is important to directly observe molecular geometries of the intermediate charges just after the photoinduced electron-transfer reactions. However, highly inhomogeneous molecular environments at the bulk heteojunction interfaces in the photoactive layers have prevented us from understanding the mechanism of the charge conductions. We have herein investigated orbital geometries, electronic couplings, and hole-dissociation dynamics of photoinduced charge-separated (CS) states in a series of poly(3-hexylthiophene)-fullerene linked dyads bridged by rigid oligo-p-phenylene spacers by using time-resolved EPR spectroscopy. It has been revealed that one-dimensional intramolecular hole-dissociations exothermically take place from localized holes in initial CS states, following bridge-mediated, photoinduced charge-separations via triplet exciton diffusions in the conjugated polymer-backbones. This molecular wire property of the photoinduced charges in solution at room temperature demonstrates the potential utility of the covalently bridged polymer molecules applied for the molecular devices.

14.
J Am Chem Soc ; 138(38): 12564-77, 2016 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-27623394

RESUMEN

The components of a 4:1 mixture of Rh(III)Cl tetrakis(4-methylphenyl)porphyrin 1 and a bowl-shaped tetra(4-pyridyl)cavitand 4 self-assemble into a 4:1 complex 14•4 via Rh-pyridyl axial coordination bonds. The single-crystal X-ray diffraction analysis and variable-temperature (VT) (1)H NMR study of 14•4 indicated that 14•4 behaves as a quadruple interlocking gear with an inner space, wherein (i) four subunits-1 are gear wheels and four p-pyridyl groups in subunit-4 are axes of gear wheels, (ii) one subunit-1 and two adjacent subunits-1 interlock with one another cooperatively, and (iii) four subunits-1 in 14•4 rotate quickly at 298 K on the NMR time scale. Together, the extremely strong porphyrin-Rh-pyridyl axial coordination bond, the rigidity of the methylene-bridge cavitand as a scaffold of the pyridyl axes, and the cruciform arrangement of the interdigitating p-tolyl groups as the teeth moiety of the gear wheels in the assembling 14-unit make 14•4 function as a quadruple interlocking gear in solution. The gear function of 14•4 was also supported by the rotation behaviors of other 4:1 complexes: 24•4 and 34•4 obtained from Rh(III)Cl tetrakis[4-(4-methylphenyl)phenyl]porphyrin 2 or Rh(III)Cl tetrakis(3,5-dialkoxyphenyl)porphyrin 3 and 4 also served as quadruple interlocking gears, whereas 14•5 obtained from 1 and tetrakis[4-(4-pyridyl)phenyl]cavitand 5 did not behave as a gear. The results of activation parameters (ΔH(⧧), ΔS(⧧), and ΔG(⧧)) obtained from Eyring plots based on line-shape analysis of the VT (1)H NMR spectra of 14•4, 24•4, and 34•4 also support the interlocking rotation (geared coupled rotation) mechanism.

15.
Angew Chem Int Ed Engl ; 55(2): 629-33, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26610285

RESUMEN

The unprecedented dependence of final charge separation efficiency as a function of donor-acceptor interaction in covalently-linked molecules with a rectilinear rigid oligo-p-xylene bridge has been observed. Optimization of the donor-acceptor electronic coupling remarkably inhibits the undesirable rapid decay of the singlet charge-separated state to the ground state, yielding the final long-lived, triplet charge-separated state with circa 100% efficiency. This finding is extremely useful for the rational design of artificial photosynthesis and organic photovoltaic cells toward efficient solar energy conversion.

16.
J Phys Chem Lett ; 15(11): 2966-2975, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38479407

RESUMEN

Solid-state materials with improved light-to-energy conversions in organic photovoltaics and in optoelectronics are expected to be developed by realizing efficient triplet-triplet annihilation (TTA) by manipulating the spin conversion processes to the singlet state. In this study, we elucidate the spin conversion mechanism for delayed fluorescence by TTA from a microscopic view of the molecular conformations. We examine the time evolution of the electron spin polarization of the triplet-pair state (TT state) in an amorphous solid-state system exhibiting highly efficient up-conversion emission by using time-resolved electron paramagnetic resonance. We clarified that the spin-state population of the singlet TT increased through the spin interconversion from triplet and quintet TT states during exciton diffusion with random orientation dynamics between the two triplets for the modulation of the exchange interaction, achieving a high quantum yield of up-conversion emission. This understanding provides us with a guide for the development of efficient light-to-energy conversion devices utilizing TTA.

17.
Sci Adv ; 10(1): eadi3147, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38170775

RESUMEN

Singlet fission can generate an exchange-coupled quintet triplet pair state 5TT, which could lead to the realization of quantum computing and quantum sensing using entangled multiple qubits even at room temperature. However, the observation of the quantum coherence of 5TT has been limited to cryogenic temperatures, and the fundamental question is what kind of material design will enable its room-temperature quantum coherence. Here, we show that the quantum coherence of singlet fission-derived 5TT in a chromophore-integrated metal-organic framework can be over hundred nanoseconds at room temperature. The suppressed motion of the chromophores in ordered domains within the metal-organic framework leads to the enough fluctuation of the exchange interaction necessary for 5TT generation but, at the same time, does not cause severe 5TT decoherence. Furthermore, the phase and amplitude of quantum beating depend on the molecular motion, opening the way to room-temperature molecular quantum computing based on multiple quantum gate control.

18.
Chem Sci ; 14(38): 10488-10493, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37799983

RESUMEN

The biomimetic design of a transition metal complex based on the iron(iv)-oxo porphyrin π-cation radical species in cytochrome P450 enzymes has been studied extensively. Herein, we translate the functions of this iron(iv)-oxo porphyrin π-cation radical species to an α-ketoacyl phosphonium species comprised of non-metal atoms and utilize it as a light-activated oxygenation auxiliary for ortho-selective oxygenation of anilines. Visible light irradiation converts the α-ketoacyl phosphonium species to the excited state, which acts as a transiently generated oxidant. The intramolecular nature of the process ensures high regioselectivity and chemoselectivity. The auxiliary is easily removable. A one-pot protocol is also described.

19.
Nat Chem ; 15(6): 794-802, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36959509

RESUMEN

Increasing levels of CO2 in the atmosphere is a problem that must be urgently resolved if the rise in current global temperatures is to be slowed. Chemically reducing CO2 into compounds that are useful as energy sources and carbon-based materials could be helpful in this regard. However, for the CO2 reduction reaction (CO2RR) to be operational on a global scale, the catalyst system must: use only renewable energy, be built from abundantly available elements and not require high-energy reactants. Although light is an attractive renewable energy source, most existing CO2RR methods use electricity and many of the catalysts used are based on rare heavy metals. Here we present a transition-metal-free catalyst system that uses an organohydride catalyst based on benzimidazoline for the CO2RR that can be regenerated using a carbazole photosensitizer and visible light. The system is capable of producing formate with a turnover number exceeding 8,000 and generates no other reduced products (such as H2 and CO).

20.
Nat Commun ; 14(1): 1056, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859419

RESUMEN

Singlet fission (SF), converting a singlet excited state into a spin-correlated triplet-pair state, is an effective way to generate a spin quintet state in organic materials. Although its application to photovoltaics as an exciton multiplier has been extensively studied, the use of its unique spin degree of freedom has been largely unexplored. Here, we demonstrate that the spin polarization of the quintet multiexcitons generated by SF improves the sensitivity of magnetic resonance of water molecules through dynamic nuclear polarization (DNP). We form supramolecular assemblies of a few pentacene chromophores and use SF-born quintet spins to achieve DNP of water-glycerol, the most basic biological matrix, as evidenced by the dependence of nuclear polarization enhancement on magnetic field and microwave power. Our demonstration opens a use of SF as a polarized spin generator in bio-quantum technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA