Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Res Microbiol ; 172(4-5): 103834, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33894336

RESUMEN

Pseudomonas aeruginosa, an opportunistic Gram-negative pathogen, is one of the major causes of nosocomial infections. In addition to its physiological adaptation capacity, it can develop resistance to disinfectants and antibiotics through various mechanisms. Recently, new eradication methods are gaining attention. Therefore, in this study, an LNA-2'-O-methyl hybrid antisense oligonucleotide targeting the acyl carrier protein P (acpP) gene was introduced into P. aeruginosa isolates. The design was determined through sequence analysis and prediction of the secondary structure of mRNA by software. Niosomes were used for enhancing cellular uptake. The control of the binding and transfection ability of the sequence was determined fluorometrically by labeling with 6-Fam. The effects were determined with broth microdilution method and qPCR studies. Eight different formulations were prepared. Among these, one formulation has shown to have ASO complexation ability whose composition was 312 µl Span 80 + 69.5 mg Cholesterol+ 36.4 mg CTAB+1 ml Chloroform and 5 ml dH2O. Thus this formulation was determined as the delivery system for the next stages. Significant gene inhibition was detected at the six isolates. Results of this study suggested that niosomes can be used as a delivery system for cellular uptake of ASO and could eliminate bacterial growth.


Asunto(s)
Proteína Transportadora de Acilo/antagonistas & inhibidores , Antibacterianos/farmacología , Liposomas/farmacología , Oligonucleótidos Antisentido/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Sistemas de Liberación de Medicamentos , Silenciador del Gen , Humanos , Liposomas/química , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/microbiología
2.
Appl Biochem Biotechnol ; 178(4): 849-64, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26541162

RESUMEN

Tuberculosis (TB) remains to be a major global health problem, with about 9 million new cases and 1.4 million deaths in 2011. For the control of tuberculosis as well as other infectious diseases, WHO recommended "ASSURED" (Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free, and Deliverable to the end user) diagnostic tools that can easily be maintained and used in developing countries. Aptamers are promising tools for developing point-of-care diagnostic assays for TB. In this study, ssDNA aptamers that recognize Mycobacterium tuberculosis H37Ra were selected by systematic evolution of ligands by exponential enrichment (SELEX). For this purpose, two different selection protocols, ultrafiltration and centrifugation, were applied. A total of 21 TB specific aptamers were selected. These aptamers exhibited "G-rich" regions on the 3' terminus of the aptamers, including a motif of "TGGGG," "GTGG," or "CTGG." Binding capability of selected aptamers were investigated by quantitative PCR and Mtb36 DNA aptamer was found the most specific aptamer to M. tuberculosis H37Ra. The dissociation constant (K d) of Mtb36 aptamer was calculated as 5.09 ± 1.43 nM in 95% confidence interval. Relative binding ratio of Mtb36 aptamer to M. tuberculosis H37Ra over Mycobacterium bovis and Escherichia coli was also determined about 4 times and 70 times more, respectively. Mtb36 aptamer is highly selective for M. tuberculosis, and it can be used in an aptamer-based biosensor for the detection of M. tuberculosis.


Asunto(s)
Aptámeros de Nucleótidos/química , Mycobacterium tuberculosis/aislamiento & purificación , Humanos , Técnica SELEX de Producción de Aptámeros , Tuberculosis/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA