Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 97: 129567, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38008339

RESUMEN

In human cells, receptor-interacting protein kinase 2 (RIPK2) is mainly known to mediate downstream enzymatic cascades from the nucleotide-binding oligomerization domain-containing receptors 1 and 2 (NOD1/2), which are regulators of pro-inflammatory signaling. Thus, the targeted inhibition of RIPK2 has been proposed as a pharmacological strategy for the treatment of a variety of pathologies, in particular inflammatory and autoimmune diseases. In this work, we designed and developed novel thieno[2,3d]pyrimidine derivatives, in order to explore their activity and selectivity as RIPK2 inhibitors. Primary in vitro evaluations of the new molecules against purified RIPKs (RIPK1-4) demonstrated outstanding inhibitory potency and selectivity for the enzyme RIPK2. Moreover, investigations for efficacy against the RIPK2-NOD1/2 signaling pathways, conducted in living cells, showed their potency could be tuned towards a low nanomolar range. This could be achieved by solely varying the substitutions at position 6 of the thieno[2,3d]pyrimidine scaffold. A subset of lead inhibitors were ultimately evaluated for selectivity against 58 human kinases other than RIPKs, displaying great specificities. We therefore obtained new inhibitors that might serve as starting point for the preparation of targeted tools, which could be useful to gain a better understanding of biological roles and clinical potential of RIPK2.


Asunto(s)
Inflamación , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Transducción de Señal , Humanos , Inflamación/tratamiento farmacológico , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/antagonistas & inhibidores , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo
2.
Phys Chem Chem Phys ; 26(3): 2016-2024, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38126374

RESUMEN

Residual dipolar couplings (RDCs) are employed in NMR analysis when conventional methods, such as J-couplings and nuclear Overhauser effects (NOEs) fail. Low-energy (optimized) conformers are often used as input structures in RDC analysis programs. However, these low-energy structures do not necessarily resemble conformations found in anisotropic environments due to interactions with the alignment medium, especially if the analyte molecules are flexible. Considering interactions with alignment media in RDC analysis, we developed and evaluated a molecular docking-based approach to generate more accurate conformer ensembles for compounds in the presence of the poly-γ-benzyl-L-glutamate alignment medium. We designed chiral phosphorus-containing compounds that enabled us to utilize 31P NMR parameters for the stereochemical analysis. Using P3D/PALES software to evaluate diastereomer discrimination, we found that our conformer ensembles outperform moderately the standard, low-energy conformers in RDC analysis. To further improve our results, we (i) averaged the experimental values of the molecular docking-based conformers by applying the Boltzmann distribution and (ii) optimized the structures through normal mode relaxation, thereby enhancing the Pearson correlation factor R and even diastereomer discrimination in some cases. Nevertheless, we presume that significant differences between J-couplings in isotropic and in anisotropic environments may preclude RDC measurements for flexible molecules. Therefore, generating conformer ensembles based on molecular docking enhances RDC analysis for mildly flexible systems while flexible molecules may require applying more advanced approaches, in particular approaches including dynamical effects.

3.
Nucleic Acids Res ; 50(2): 635-650, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35018474

RESUMEN

Coronaviral methyltransferases (MTases), nsp10/16 and nsp14, catalyze the last two steps of viral RNA-cap creation that takes place in cytoplasm. This cap is essential for the stability of viral RNA and, most importantly, for the evasion of innate immune system. Non-capped RNA is recognized by innate immunity which leads to its degradation and the activation of antiviral immunity. As a result, both coronaviral MTases are in the center of scientific scrutiny. Recently, X-ray and cryo-EM structures of both enzymes were solved even in complex with other parts of the viral replication complex. High-throughput screening as well as structure-guided inhibitor design have led to the discovery of their potent inhibitors. Here, we critically summarize the tremendous advancement of the coronaviral MTase field since the beginning of COVID pandemic.


Asunto(s)
Antivirales/química , Antivirales/farmacología , Coronavirus/efectos de los fármacos , Coronavirus/enzimología , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/química , Metiltransferasas/metabolismo , Secuencia de Aminoácidos , Aminoácidos/química , Sitios de Unión , Coronavirus/genética , Descubrimiento de Drogas , Humanos , Metilación , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Unión Proteica , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA