RESUMEN
Day and nighttime autumn fish abundance and biomass were studied in the pelagic and littoral zones of Lake Sauka in Latvia. Both pelagic methods (hydroacoustics and trawling) revealed significantly higher fish abundance and biomass during the day than at night, especially in deeper zones (below 3 m). Roach (Rutilus rutilus) and Eurasian perch (Perca fluviatilis) dominated the trawl catches during the day, while roach and ruffe dominated at night. Fish smaller than 14 cm strongly dominated in both the trawl catches and hydroacoustic observations. Our hydroacoustic sampling found inhomogeneous pelagic distributions of fish aggregated in big shoals during the day. In the littoral zone, which was sampled by beach seining, both the abundance and biomass were significantly higher at night than during the day. Roach, bleak, and European perch usually dominated in beach seine catches during the day and at night. The daytime pelagic biomass found by hydroacoustics was 62 kg/ha and it decreased to approximately 11 kg/ha at night. The littoral biomass found by beach seining was diurnally opposite, 4 kg/ha during the day and 37 kg/ha at night. It is obvious that diurnal horizontal migrations between pelagic and littoral zones, and shoaling behavior during the daytime are common patterns in the shallow Lake Sauka during the autumn. The study of the spatial distribution of fish is extremely important for the establishment of an appropriate monitoring plan for the purposes of the Water Framework Directive with regard to the morphometry of the lake, the geographical location, and the sampling period of the year. This study also shows that the combination of completely non-invasive hydroacoustic and other methods that are invasive (trawls, beach seines) but not as destructive as gillnets, which are normally used for scientific fish monitoring in Europe, could be a future way forward for fish monitoring.
Asunto(s)
Biomasa , Lagos , Estaciones del Año , Animales , Letonia , Explotaciones Pesqueras , Densidad de Población , Peces/fisiología , Acústica , Distribución Animal , Ecosistema , Cyprinidae/fisiologíaRESUMEN
Invasive fish threaten ponds' ecological status and their ecosystem services, therefore obtaining a representative sample of fish community composition is fundamental to fishery management, research and nature conservation. Estimates of the size distribution, density and biomass of the topmouth gudgeon (Pseudorasbora parva) model species of invasive fish in three ponds were compared among three sampling methods: electrofishing, fish-trapping and throw-netting. The study illustrates that the invasive fish, P. parva, can be detected by all tested fishing methods, yet our results clearly showed that there are pronounced differences among methods in population characteristic estimates. Electrofishing and throw-netting gave biased information on the size distribution of P. parva. Fish-trapping and throw-netting gave reasonable P. parva density and biomass estimates, while electrofishing clearly underestimated it. All tested methods showed a body size increment of P. parva between summer and autumn sampling sessions, yet neither throw-netting nor electrofishing recorded an increment in its density. Our study showed that fish-trapping is the most reliable and affordable method to estimate invasive P. parva population characteristics in ponds despite more time-demanding sampling. The success depends on the mesh size of sampling gear, operator skill and habitat structure. The cost-effectiveness of the selected methods and the importance of invasive fish monitoring in ponds is discussed. The sampling gear must be considered carefully according to the aim of the monitoring.
Asunto(s)
Cyprinidae , Cipriniformes , Animales , Ecosistema , Estanques , Explotaciones Pesqueras , PecesRESUMEN
Catfish have spread across Europe and several countries out of this region within the last decades. Basic knowledge of this apex predator has revealed concerns of invasive behaviour and questions regarding its utilization as a biomanipulation species. However, a method enabling its regulation to a required level has not yet been developed. We simulated the impact of angling on the catfish population by method of hook-lines in two post-mining lakes with a monitored population consisting of tagged individuals and in two reservoirs as reference sites. Further, the efficiency of hook-lines as a reducing device was examined and the economic aspects were determined. Catfish population in localities where the species is unwanted or invasive may be efficiently reduced to a harmless level by hook-lines and angling (depending on the approach of anglers). The most efficient time of the year seems to be spring to early summer with catch efficiency of 5.4 individuals per 10 baits in one day. The catch efficiency markedly decreased during the second part of the year and did not exceed 2.8 individuals per 10 baits in one day. Mean size of catfish had negative impact whereas catfish biomass had positive impact on the catch efficiency. Trophic status and number of catfish in the locality had no impact on the catch efficiency. According to model, 11-18 bait-days per 1â¯ha per season is efficient to decrease catfish population to 10% of the original size. Both angling and hook-lines are very simple, they are financially and time bearable mechanisms of catfish regulation in any condition. However, catfish play an important role as a biomanipulative species in many localities. In this case where catfish is beneficial, angling presents a real threat of population collapse and loss of the biomanipulative effect.
Asunto(s)
Bagres , Animales , Europa (Continente) , Lagos , Regulación de la Población , Estaciones del AñoRESUMEN
The higher proportion of males of the invasive round goby Neogobius melanostomus in samples from two activity selective passive fishing gears compared with one activity non-selective fishing gear in three Dutch lakes is related to higher male locomotory activity and is a sex-dependent trait. This difference in activity reflects the different ecology of male and female N. melanostomus.
Asunto(s)
Especies Introducidas , Locomoción , Perciformes , Animales , Ecología/métodos , Femenino , Lagos , Masculino , FenotipoRESUMEN
Stable isotope analysis (SIA) is widely used to study trophic ecology and food webs in aquatic ecosystems. In the case of fish, muscle tissue is generally preferred for SIA, and the method is lethal in most cases. We tested whether blood and fin clips can be used as non-lethal alternatives to muscle tissue for examining the isotopic composition of two freshwater predatory fish, European catfish (Silurus glanis) and Northern pike (Esox lucius), species of high value for many freshwater systems as well as invasive species in many others. Blood samples from the caudal vein, anal fin clips, and dorsal muscle obtained by biopsy punch were collected from four catfish and pike populations (14-18 individuals per population). Subsequently, these samples were analyzed for δ13C and δ15N. The effects of alternative tissues, study site, and fish body mass on the isotopic offset were investigated. Both species showed a correlation between the isotopic offset and the tissue type, as well as the study site, but no significant relationship with the body mass. The isotopic offsets between tissues were used to calculate the conversion equations. The results demonstrated that both blood and fin clips are suitable and less invasive alternative to muscle in SIA studies focused on European catfish and Northern pike. Blood provided better correspondence to muscle isotope values. However, our results clearly demonstrated that isotopic offsets between tissues vary significantly among populations of the same species. Therefore, obtaining a muscle biopsy from several individuals in any population is advisable to gain initial insights and establish a possible population-specific inter-tissue conversion.
Asunto(s)
Bagres , Ecosistema , Animales , Isótopos de Nitrógeno/análisis , Isótopos de Carbono/análisis , Músculos/química , Esocidae/fisiología , Agua DulceRESUMEN
European catfish is a large-bodied apex predator, a key species in native areas, but invasive in others where it negatively impacts local aquatic fauna necessitates catfish regulation. However, traditional ichthyological methods face challenges in capturing it. The study presents a detailed description of the efficient long-line method, refined through 48 sampling campaigns across twelve European water bodies. This method proves cost-effective and technically undemanding, requiring an average of 5.6 bait fish to catch one European catfish per day. The long-lines outperform other techniques, with the highest Biomass per unit effort (BPUE) of 6.205 kg of catfish per man-hour and minimal by-catch (0.276 kg per man-hour). In contrast, fyke nets, the second most efficient method, achieve a BPUE of 0.621 kg of catfish per man-hour with 3.953 kg of by-catch per man-hour. To optimize long-line catches, a 15 m distance between branch lines and regular relocation is recommended. Live fish is the most effective bait with no significant differences observed among species. However, earthworms, a less controversial alternative, are also efficient, especially for smaller catfish. Our recapture approach using various ichthyological methods revealed no hook avoidance behavior by catfish after a previous catch or avoidance by a certain part of the population. The long-line method is suitable for population regulation, scientific research, and conservation efforts and is the most effective means of capturing live European catfish.
RESUMEN
Intra-species variability in isotopic niches, specifically isotopic total niche width (ITNW), isotopic individual niche width (IINW), and isotopic individual specialization (IIS), was studied using an innovative approach without sacrificing the vertebrates. Stable isotopes (δ13C, δ15N) in four body tissues differing in isotopic half-life were analyzed from four freshwater fish species representing different trophic positions. ITNW was widest for the apex predator (European catfish) and narrowest for the obligate predator (Northern pike). IINW exhibited a polynomial trend for the European catfish, Northern pike, and Eurasian perch (mesopredator), decreasing with body mass and increasing again after exceeding a certain species-dependent body mass threshold. Thus, for ectotherms, apex predator status is linked rather to its size than to the species. In herbivores (rudd), IINW increased with body mass. The IIS of predators negatively correlated with site trophic state. Therefore, eutrophication can significantly change the foraging behavior of certain species. We assume that the observed trends will occur in other species at similar trophic positions in either aquatic or terrestrial systems. For confirmation, we recommend conducting a similar study on other species in different habitats.
RESUMEN
Two basic ecological relationships, herbivory and competition, distinctively influence terrestrial ecosystem characteristics, such as plant cover, species richness and species composition. We conducted a cage experiment under natural conditions in an aquatic ecosystem to test the impacts of two treatments combined in a factorial manner: (i) a pulse treatment - removal of dominant competitors among primary producers (macroalgae Chara sp. and Vaucheria sp.), and (ii) a press treatment - preventing herbivore (fish, crayfish) access to caged plots. The plots were sampled once before the treatments were established and four more times within two years. Both treatments had a significantly positive impact on macrophyte cover and species richness and changed the macrophyte species composition. The effect of the macroalgae removal was immediate with the highest species richness occurrence during the first post-treatment monitoring, but the positive effect vanished with time. In contrast, preventing herbivore access had a gradual but long-lasting effect and reached a more steady-state over time. Two of the most common species showed contrasting responses, the palatable Potamogeton pectinatus was most supported by caging, while the distasteful Myriophyllum spicatum preferred open plots. Our findings may be applicable during the revitalisation of aquatic ecosystems that aims to increase macrophyte biodiversity.
Asunto(s)
Biodiversidad , Chara/fisiología , Herbivoria/fisiología , Dispersión de las Plantas , Potamogetonaceae/fisiología , Animales , Astacoidea/fisiología , Restauración y Remediación Ambiental , Peces/fisiología , LagosRESUMEN
So far, perch egg strands have been considered unpalatable biological material. However, we repeatedly found egg strands of European perch (Perca fluviatilis) in the diet of European catfish (Silurus glanis) caught by longlines in Milada and Most Lakes, Czech Republic. The finding proves that perch egg strands compose a standard food source for this large freshwater predatory fish. It extends the present knowledge on catfish foraging plasticity, showing it as an even more opportunistic feeder. Utilization of perch egg strands broadens the catfish diet niche width and represents an advantage against other fish predators. Comparison of datasets from extensive gillnet and SCUBA diver sampling campaigns gave the evidence that at least in localities where food sources are limited, multilevel predation by catfish may have an important impact on the perch population.
Asunto(s)
Bagres , Agua Dulce , Percas , Conducta Predatoria , Animales , República Checa , Contenido Digestivo , LagosRESUMEN
Apex predators play a key role in ecosystem stability across environments but their numbers in general are decreasing. By contrast, European catfish (Silurus glanis), the European freshwater apex predator, is on the increase. However, studies concerning apex predators in freshwaters are scarce in comparison to those in terrestrial and marine ecosystems. The present study combines stomach content and stable isotope analyses with diet preferences of catfish to reveal its impact on the ecosystem since stocking. Catfish niche width is extremely wide in comparison to the typical model predator, Northern pike (Esox lucius). Catfish and pike have different individual dietary specialization that results in different functional roles in coupling or compartmentalizing distinct food webs. The role of both species in the ecosystem is irreplaceable due to multiple predator effects. The impact of catfish is apparent across the entire aquatic ecosystem, but herbivores are the most affected ecological group. The key feature of catfish, and probably a common feature of apex predators in general, is utilization of several dietary strategies by individuals within a population: long-term generalism or specialization and also short-term specialization. Catfish, similar to other large-bodied apex predators, have two typical features: enormous generalism and adaptability to new prey sources.