RESUMEN
Plant cells are surrounded by a cell wall and do not migrate, which makes the regulation of cell division orientation crucial for development. Regulatory mechanisms controlling cell division orientation may have contributed to the evolution of body organization in land plants. The GRAS family of transcription factors was transferred horizontally from soil bacteria to an algal common ancestor of land plants. SHORTROOT (SHR) and SCARECROW (SCR) genes in this family regulate formative periclinal cell divisions in the roots of flowering plants, but their roles in nonflowering plants and their evolution have not been studied in relation to body organization. Here, we show that SHR cell autonomously inhibits formative periclinal cell divisions indispensable for leaf vein formation in the moss Physcomitrium patens, and SHR expression is positively and negatively regulated by SCR and the GRAS member LATERAL SUPPRESSOR, respectively. While precursor cells of a leaf vein lacking SHR usually follow the geometry rule of dividing along the division plane with the minimum surface area, SHR overrides this rule and forces cells to divide nonpericlinally. Together, these results imply that these bacterially derived GRAS transcription factors were involved in the establishment of the genetic regulatory networks modulating cell division orientation in the common ancestor of land plants and were later adapted to function in flowering plant and moss lineages for their specific body organizations.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , División Celular/genética , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
Chlorarachniophyte algae have complex plastids acquired by the uptake of a green algal endosymbiont, and this event is called secondary endosymbiosis. Interestingly, the plastids possess a relict endosymbiont nucleus, referred to as the nucleomorph, in the intermembrane space, and the nucleomorphs contain an extremely reduced and compacted genome in comparison with green algal nuclear genomes. Therefore, chlorarachniophyte plastids consist of two endosymbiotically derived genomes, i.e., the plastid and nucleomorph genomes. To date, complete nucleomorph genomes have been sequenced in four different species, whereas plastid genomes have been reported in only two species in chlorarachniophytes. To gain further insight into the evolution of endosymbiotic genomes in chlorarachniophytes, we newly sequenced the plastid genomes of three species, Gymnochlora stellata, Lotharella vacuolata, and Partenskyella glossopodia. Our findings reveal that chlorarachniophyte plastid genomes are highly conserved in size, gene content, and gene order among species, but their nucleomorph genomes are divergent in such features. Accordingly, the current architecture of the plastid genomes of chlorarachniophytes evolved in a common ancestor, and changed very little during their subsequent diversification. Furthermore, our phylogenetic analyses using multiple plastid genes suggest that chlorarachniophyte plastids are derived from a green algal lineage that is closely related to Bryopsidales in the Ulvophyceae group.
Asunto(s)
Chlorophyta/genética , Secuencia Conservada/genética , Genoma de Plastidios , Secuencia de Bases , Intrones/genética , Funciones de Verosimilitud , Filogenia , Especificidad de la EspecieRESUMEN
Stem cells are formed at particular times and positions during the development of multicellular organisms. Whereas flowering plants form stem cells only in the sporophyte generation, non-seed plants form stem cells in both the sporophyte and gametophyte generations. Although the molecular mechanisms underlying stem cell formation in the sporophyte generation have been extensively studied, only a few transcription factors involved in the regulation of gametophyte stem cell formation have been reported. The moss Physcomitrella patens forms a hypha-like body (protonema) and a shoot-like body (gametophore) from a protonema apical cell and a gametophore apical cell, respectively. These apical cells have stem cell characteristics and are formed as side branches of differentiated protonema cells. Here, we show that four AP2-type transcription factors orthologous to Arabidopsis thaliana AINTEGUMENTA, PLETHORA and BABY BOOM (APB) are indispensable for the formation of gametophore apical cells from protonema cells. Quadruple disruption of all APB genes blocked gametophore formation, even in the presence of cytokinin, which enhances gametophore apical cell formation in the wild type. All APB genes were expressed in emerging gametophore apical cells, but not in protonema apical cells. Heat-shock induction of an APB4 transgene driven by a heat-shock promoter increased the number of gametophores. Expression of all APB genes was induced by auxin but not by cytokinin. Thus, the APB genes function synergistically with cytokinin signaling to determine the identity of the two types of stem cells.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Bryopsida/citología , Bryopsida/genética , Diferenciación Celular/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Células Madre/fisiología , Factores de Transcripción/metabolismo , Southern Blotting , Bryopsida/crecimiento & desarrollo , Análisis por Conglomerados , Biología Computacional , Citocininas/metabolismo , Células Germinativas de las Plantas/crecimiento & desarrollo , Histocitoquímica , Ácidos Indolacéticos/metabolismo , Funciones de Verosimilitud , Microscopía Fluorescente , Modelos Genéticos , Filogenia , Plásmidos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Especificidad de la EspecieRESUMEN
Stem cells self-renew and produce precursor cells that differentiate to become specialized cell types. Land plants generate several types of stem cells that give rise to most organs of the plant body and whose characters determine the body organization. The moss Physcomitrella patens forms eight types of stem cells throughout its life cycle. Under gametangium-inducing conditions, multiple antheridium apical stem cells are formed at the tip of the gametophore and each antheridium apical stem cell divides to form an antheridium. We found that the gametophore apical stem cell, which typically forms leaf and stem tissues, changes to become a new type of stem cell, which we term the antheridium initial stem cell. This antheridium initial stem cell produces multiple antheridium apical stem cells, resulting in a cluster of antheridia at the tip of gametophore. This is the first report of a land plant stem cell directly producing another type of stem cell during normal development. Notably, the antheridium apical stem cells are distally produced from the antheridium initial stem cell, similar to the root cap stem cells of vascular plants, suggesting the use of similar molecular mechanisms and a possible evolutionary relationship.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'.
Asunto(s)
Bryopsida/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Gametogénesis en la Planta , Células Madre/citología , Evolución BiológicaRESUMEN
MIKC classic (MIKCC)-type MADS-box genes encode transcription factors that function in various developmental processes, including angiosperm floral organ identity. Phylogenetic analyses of the MIKCC-type MADS-box family, including genes from non-flowering plants, suggest that the increased numbers of these genes in flowering plants is related to their functional divergence; however, their precise functions in non-flowering plants and their evolution throughout land plant diversification are unknown. Here, we show that MIKCC-type MADS-box genes in the moss Physcomitrella patens function in two ways to enable fertilization. Analyses of protein localization, deletion mutants and overexpression lines of all six genes indicate that three MIKCC-type MADS-box genes redundantly regulate cell division and growth in the stems for appropriate external water conduction, as well as the formation of sperm with motile flagella. The former function appears to be maintained in the flowering plant lineage, while the latter was lost in accordance with the loss of sperm.
Asunto(s)
Bryopsida/genética , Células Germinativas de las Plantas/fisiología , Proteínas de Dominio MADS/metabolismo , Agua/metabolismo , Bryopsida/fisiología , División Celular , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Stem cells self-renew and produce cells that differentiate to become the source of the plant body. The moss Physcomitrella patens forms eight types of stem cells during its life cycle and serves as a useful model in which to explore the evolution of such cells. The common ancestor of land plants is inferred to have been haplontic and to have formed stem cells only in the gametophyte generation. A single stem cell would have been maintained in the ancestral gametophyte meristem, as occurs in extant basal land plants. During land plant evolution, stem cells diverged in the gametophyte generation to form different types of body parts, including the protonema and rhizoid filaments, leafy-shoot and thalloid gametophores, and gametangia formed in moss. A simplex meristem with a single stem cell was acquired in the sporophyte generation early in land plant evolution. Subsequently, sporophyte stem cells became multiple in the meristem and were elaborated further in seed plant lineages, although the evolutionary origin of niche cells, which maintain stem cells is unknown. Comparisons of gene regulatory networks are expected to give insights into the general mechanisms of stem cell formation and maintenance in land plants and provide information about their evolution. P. patens develops at least seven types of simplex meristem in the gametophyte and at least one type in the sporophyte generation and is a good material for regulatory network comparisons. In this review, we summarize recently revealed molecular mechanisms of stem cell initiation and maintenance in the moss.
Asunto(s)
Bryopsida/citología , Bryopsida/crecimiento & desarrollo , Estadios del Ciclo de Vida/fisiología , Células Madre/citología , Bryopsida/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Células Germinativas de las Plantas/citología , Células Germinativas de las Plantas/crecimiento & desarrollo , Células Germinativas de las Plantas/metabolismo , Estadios del Ciclo de Vida/genética , Modelos Biológicos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Células Madre/metabolismoRESUMEN
The phylogeny of the terrestrial cyanobacterium Nostoc commune and its neighboring Nostoc species was studied using molecular genetic and chemotaxonomic approaches. At least eight genotypes of N. commune were characterized by the differences among 16S rRNA gene sequences and the petH gene encoding ferredoxin-NADP⺠oxidoreductase and by random amplified polymorphic DNA analysis. The genotypes of N. commune were distributed in Japan without regional specificity. The nrtP gene encoding NrtP-type nitrate/nitrite permease was widely distributed in the genus Nostoc, suggesting that the occurrence of the nrtP gene can be one of the characteristic features that separate cyanobacteria into two groups. The wspA gene encoding a 36-kDa water stress protein was only found in N. commune and Nostoc verrucosum, suggesting that these Nostoc species that form massive colonies with extracellular polysaccharides can be exclusively characterized by the occurrence of the wspA gene. Fifteen species of Nostoc and Anabaena were investigated by comparing their carotenoid composition. Three groups with distinct patterns of carotenoids were related to the phylogenic tree constructed on the basis of 16S rRNA sequences. Nostoc commune and Nostoc punctiforme were clustered in one monophyletic group and characterized by the occurrence of nostoxanthin, canthaxanthin, and myxol glycosides.
Asunto(s)
Anabaena/genética , Nostoc commune/genética , Anabaena/metabolismo , Anabaena/patogenicidad , Secuencia de Bases , Cantaxantina/metabolismo , Carotenoides/metabolismo , Genes de ARNr , Variación Genética , Japón , Datos de Secuencia Molecular , Nitratos/metabolismo , Nitritos/metabolismo , Nostoc commune/metabolismo , Nostoc commune/patogenicidad , Filogenia , ARN Ribosómico 16S , Xantófilas/metabolismoRESUMEN
A transient genetic transformation system was established for a chlorarachniophyte alga, Lotharella amoebiformis K. Ishida et Y. Hara. We first isolated sequences that contain a putative promoter for a RUBISCO SSU (rbcS) gene and a terminator for another copy of rbcS gene from L. amoebiformis. With those promoter and terminator sequences, we developed two expression vectors, pLaRGus and pLaRGfp, which code uidA and egfp genes, respectively. The cells were then transformed with each vector using a microparticle bombardment system. When the cells were transformed with the pLaRGus, ß-glucuronidase (GUS) staining dyed several cells blue. Green fluorescent protein (GFP) fluorescence was observed in the cells transformed with pLaRGfp. The highest transient transformation efficiency, 35 per 2 × 10(7) cells, was detected from the GUS staining. This study demonstrates that two reporter genes are expressed in L. amoebiformis cells when rbcS promoter and terminator are used. The conditions of transformation were also optimized. This is the first report of successful genetic transformation in chlorarachniophyte algae.
RESUMEN
Chlorarachniophytes are flagellated and/or reticulopod-forming marine algae with chlorophyll a- and b-containing plastids of secondary endosymbiotic origin. They are one of only two algal groups known to possess a "nucleomorph" (i.e. the remnant nucleus of the eukaryotic endosymbiont that donated the plastid). Apart from the recently sequenced nucleomorph genome of Bigelowiella natans, little is known about the size, structure, and composition of chlorarachniophyte nucleomorph genomes. Toward the goal of better understanding nucleomorph genome diversity, as well as establishing a phylogenetic framework with which to interpret variation in chlorarachniophyte morphology, ultrastructure, and life cycle, we are studying a wide range of chlorarachniophyte strains from public culture collections and natural habitats. We have obtained 22 new chlorarachniophyte nuclear and nucleomorph 18S rRNA gene (18S rDNA) sequences and nucleomorph genome size estimates for 14 different strains. Consistent with previous studies, all of the chlorarachniophytes examined appear to possess three nucleomorph chromosomes. However, our results suggest considerable variation in nucleomorph genome size and structure, with individual chromosome sizes ranging from approximately 90 to approximately 210 kbp, and total genome sizes between approximately 330 kbp in Lotharella amoebiformis and approximately 610 kbp in unidentified chlorarachniophyte strain CCMP622. The significance of these phylogenetic and nucleomorph karyotype data is discussed.
Asunto(s)
Eucariontes/genética , Filogenia , Electroforesis en Gel de Campo Pulsado , Eucariontes/clasificación , Variación Genética , Cariotipificación , Datos de Secuencia Molecular , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADNRESUMEN
Differentiation of epidermal cells is important for plants because they are in direct contact with the environment. Rhizoids are multicellular filaments that develop from the epidermis in a wide range of plants, including pteridophytes, bryophytes, and green algae; they have similar functions to root hairs in vascular plants in that they support the plant body and are involved in water and nutrient absorption. In this study, we examined mechanisms underlying rhizoid development in the moss, Physcomitrella patens, which is the only land plant in which high-frequency gene targeting is possible. We found that rhizoid development can be split into two processes: determination and differentiation. Two types of rhizoids with distinct developmental patterns (basal and mid-stem rhizoids) were recognized. The development of basal rhizoids from epidermal cells was induced by exogenous auxin, while that of mid-stem rhizoids required an unknown factor in addition to exogenous auxin. Once an epidermal cell had acquired a rhizoid initial cell fate, expression of the homeodomain-leucine zipper I gene Pphb7 was induced. Analysis of Pphb7 disruptant lines showed that Pphb7 affects the induction of pigmentation and the increase in the number and size of chloroplasts, but not the position or number of rhizoids. This is the first report on the involvement of a homeodomain-leucine zipper I gene in epidermal cell differentiation.
Asunto(s)
Briófitas/crecimiento & desarrollo , Proteínas de Homeodominio/metabolismo , Ácidos Indolacéticos/metabolismo , Leucina Zippers/fisiología , Regulación de la Expresión Génica de las PlantasRESUMEN
Characterization of seven MADS-box genes, termed PPM1-PPM4 and PpMADS1-PpMADS3, from the moss model species Physcomitrella patens is reported. Phylogeny reconstructions and comparison of exon-intron structures revealed that the genes described here represent two different classes of homologous, yet distinct, MIKC-type MADS-box genes, termed MIKC(c)-type genes-"(c)" stands for "classic"-(PPM1, PPM2, PpMADS1) and MIKC(*)-type genes (PPM3, PPM4, PpMADS2, PpMADS3). The two gene classes deviate from each other in a characteristic way, especially in a sequence stretch termed intervening region. MIKC(c)-type genes are abundantly present in all land plants which have been investigated in this respect, and give rise to well-known gene types such as floral meristem and organ identity genes. In contrast, LAMB1 from the clubmoss Lycopodium annotinum was identified as the only other MIKC(*)-type gene published so far. Our findings strongly suggest that the most recent common ancestor of mosses and vascular plants contained at least one MIKC(c)-type and one MIKC(*)-type gene. Our studies thus reveal an ancient duplication of an MIKC-type gene that occurred before the separation of the lineages that led to extant mosses and vascular plants more than about 450 MYA. The identification of bona fide K-domains in both MIKC(*)-type and MIKC(c)-type proteins suggests that the K-domain is more ancient than is suggested by a recent alternative hypothesis. MIKC(*)-type genes may have escaped identification in ferns and seed plants so far. It seems more likely, however, that they represent a class of genes which has been lost in the lineage which led to extant ferns and seed plants. The high number of P. patens MADS-box genes and the presence of a K-box in the coding region and of some potential binding sites for MADS-domain proteins and other transcription factors in the putative promoter regions of these genes suggest that MADS-box genes in mosses are involved in complex gene regulatory networks similar to those in flowering plants.
Asunto(s)
Bryopsida/genética , Proteínas de Dominio MADS/genética , Secuencia de Aminoácidos , Proteínas de Dominio MADS/clasificación , Proteínas de Dominio MADS/metabolismo , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Análisis de Secuencia de ADNRESUMEN
MADS-box genes encode transcription factors involved in various important aspects of development and differentiation in land plants, metazoans, and other organisms. Three types of land plant MADS-box genes have been reported. MIKCC- and MIKC*-type genes both contain conserved MADS and K domains but have different exon/intron structures. M-type genes lack a K domain. Most MADS-box genes previously analyzed in land plants are expressed in the sporophyte (diploid plant body); few are expressed in the gametophyte (haploid plant body). Land plants are believed to have evolved from a gametophyte (haploid)-dominant ancestor without a multicellular sporophyte (diploid plant body); most genes expressed in the sporophyte probably originated from those used in the gametophyte during the evolution of land plants. To analyze the evolution and diversification of MADS-box genes in land plants, gametophytic MADS-box genes were screened using macroarray analyses for 105 MADS-box genes found in the Arabidopsis genome. Eight MADS-box genes were predominantly expressed in pollen, the male gametophyte; all but one of their expression patterns was confirmed by Northern analyses. Analyses of the exon/intron structure of these seven genes revealed that they included two MIKCC-type, one M-type, and four MIKC*-type MADS-box genes. Previously, MIKC*-type genes have been reported only from a moss and a club moss, and this is the first record in seed plants. These genes can be used to investigate the unknown ancestral functions of MADS-box genes in land plants. The macroarray analyses did not detect expression of 56 of 61 M-type MADS-box genes in any tissues examined. A phylogenetic tree including all three types of Arabidopsis MADS-box genes with representative genes from other organisms showed that M-type genes were polyphyletic and that their branch lengths were much longer than for the other genes. This finding suggests that most M-type genes are pseudogenes, although further experiments are necessary to confirm this possibility. Our global phylogenetic analyses of MADS-box genes did not support the previous classification of MADS-box genes into type I and II groups, based on smaller scale analyses. An evolutionary scenario for the evolution of MADS-box genes in land plants is discussed.