Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-32210132

RESUMEN

The long-chain acyl-CoA synthetases (LACSs) are involved in lipid synthesis, fatty acid catabolism, and the transport of fatty acids between subcellular compartments. These enzymes catalyze the critical reaction of fatty acyl chains to fatty acyl-CoAs for the triacylglycerol biosynthesis used as carbon and energy reserves. In Arabidopsis, LACSs are encoded by a family of nine genes, with LACS9 being the only member located in the chloroplast envelope membrane. However, the comprehensive role of LACS9 and its contribution to plant metabolism have not been explored thoroughly. In this study, we report on the identification and characterization of LACS9 mutants in rice plants. Our results indicate that the loss-of-function mutations in OsLACS9 affect the architecture of internodes resulting in dwarf plants with large starch granules in the chloroplast, showing the suppression of starch degradation. Moreover, the plastid localization of α-amylase I-1 (AmyI-1)-a key enzyme involved in starch breakdown in plastids-was suppressed in the lacs9 mutant line. Immunological and confocal laser scanning microscopy analyses showed that OsLACS9-GFP is located in the chloroplast envelope in green tissue. Microscopic analysis showed that OsLACS9s interact with each other in the plastid envelope membrane. Furthermore, OsLACS9 is also one of the proteins transported to plastids without a transit peptide or involvement of the Toc/Tic complex system. To identify the plastid-targeting signal of OsLACS9, the transient expression and localization of a series of N-terminal truncated OsLACS9-green fluorescent protein (GFP) fusion proteins were examined. Truncation analyses identified the N-terminal 30 amino acid residues to be required for OsLACS9 plastid localization. Overall, the data in this study provide an advanced understanding of the function of OsLACS9 and its role in starch degradation and plant growth.


Asunto(s)
Cloroplastos/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Membranas Intracelulares/metabolismo , Oryza/genética , Oryza/metabolismo , Mutación con Pérdida de Función , Mutación , Oryza/crecimiento & desarrollo , Fenotipo , Plastidios/genética , Plastidios/metabolismo , Almidón/química
2.
Biosci Biotechnol Biochem ; 81(7): 1274-1278, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28318436

RESUMEN

Reversible denaturation of Pseudomonas aeruginosa cytochrome c551 (PAc551) could be followed using five systematic urea derivatives that differ in the alkyl chain length, i.e. urea, N-methylurea (MU), N-ethylurea (EU), N-propylurea (PU), and N-butylurea (BU). The BU concentration was the lowest required for the PAc551 denaturation, those of PU, EU, MU, and urea being gradually higher. Furthermore, the accessible surface area difference upon PAc551 denaturation caused by BU was found to be the highest, those by PU, EU, MU, and urea being gradually lower. These findings indicate that urea derivatives with longer alkyl chains are stronger denaturants. In this study, as many as five systematic urea derivatives could be applied for the reversible denaturation of a single protein, PAc551, for the first time, and the effects of the alkyl chain length on protein denaturation were systematically verified by means of thermodynamic parameters.


Asunto(s)
Proteínas Bacterianas/química , Grupo Citocromo c/química , Compuestos de Metilurea/química , Pseudomonas aeruginosa/química , Urea/análogos & derivados , Urea/química , Proteínas Bacterianas/aislamiento & purificación , Grupo Citocromo c/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Compuestos de Metilurea/farmacología , Desnaturalización Proteica/efectos de los fármacos , Pseudomonas aeruginosa/enzimología , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Relación Estructura-Actividad , Termodinámica , Urea/farmacología
3.
Plant Signal Behav ; 11(9): e1221558, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27700755

RESUMEN

The diversity of protein targeting pathways to plastids and their regulation in response to developmental and metabolic status is a key issue in the regulation of cellular function in plants. The general import pathways that target proteins into and across the plastid envelope with changes in gene expression are critical for plant development by regulating the response to physiological and metabolic changes within the cell. Glycoprotein targeting to complex plastids involves routing through the secretory pathway, among others. However, the mechanisms of trafficking via this system remain poorly understood. The present article discusses our results in site-specific N-glycosylation of nucleotide pyrophosphatase/phosphodiesterases (NPPs) glycoproteins and highlights protein delivery in Golgi/plastid pathway via the secretory pathway. Furthermore, we outline the hypotheses that explain the mechanism for importing vesicles trafficking with nucleus-encoded proteins into plastids.


Asunto(s)
Aparato de Golgi/metabolismo , Plastidios/metabolismo , Núcleo Celular/metabolismo , Glicoproteínas/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Transporte de Proteínas , Pirofosfatasas/metabolismo , Vías Secretoras/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA