Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Chem Phys ; 161(9)2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39225525

RESUMEN

Thermodynamic hydrate promoters and kinetic hydrate promoters can be used to reduce the P-T conditions for clathrate hydrate synthesis to decrease the nucleation induction time while increasing growth rates. Two commonly used promoters for hydrate research are tetrahydrofuran (THF) and sodium dodecyl sulfate (SDS), which can increase the overall hydrate promotion when used in tandem as compared to individually. There are several molecular theories regarding how SDS promotes hydrate growth. This study explores the micellular theory, for which hydrate formation depends on surfactant aggregates (micelles) at a critical micelle concentration (CMC) to increase the interfacial surface area. The micellular theory is the most investigated and criticized surfactant hydrate promotion theory. To address questions related to micellar behavior, this study investigates the intermolecular behavior between SDS and THF for the identification of micelles at hydrate-forming conditions. The systems explored contained THF at 3 and 5 wt. % with varying concentrations of SDS below and above the CMC. Several methods including a qualitative visual method, conductivity, interfacial tensiometry, 13C Liquid-state Nuclear Magnetic Resonance (NMR) spectroscopy, and 1H diffusion NMR spectroscopy were evaluated at temperatures below the Krafft point of SDS and above 0 °C. The presence of THF at low concentrations decreased the critical temperature for the formation of SDS micelles, where SDS is solubilized in THF/water solution at hydrate-forming temperatures without precipitation. The CMC of SDS was decreased significantly even at hydrate-forming conditions. Mixed surfactant-cosolvent micellular behavior of SDS in the presence of low concentrations of THF was confirmed at hydrate-forming conditions above 0 °C.

2.
Inorg Chem ; 62(18): 6882-6892, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36715366

RESUMEN

At low guest atom concentrations, Si clathrates can be viewed as semiconductors, with the guest atoms acting as dopants, potentially creating alternatives to diamond Si with exciting optoelectronic and spin properties. Studying Si clathrates with different guest atoms would not only provide insights into the electronic structure of the Si clathrates but also give insights into the unique properties that each guest can bring to the Si clathrate structure. However, the synthesis of Si clathrates with guests other than Na is challenging. In this study, we have developed an alternative approach, using thermal diffusion into type II Si clathrate with an extremely low Na concentration, to create Si clathrate with Li guests. Using time-of-flight secondary-ion mass spectroscopy, X-ray diffraction, and Raman scattering, thermal diffusion of Li into the nearly empty Si clathrate framework is detected and characterized as a function of the diffusion temperature and time. Interestingly, the Si clathrate exhibits reduced structural stability in the presence of Li, converting to polycrystalline or disordered phases for anneals at temperatures where the starting Na guest Si clathrate is quite stable. The Li atoms inserted into the Si clathrate lattice contribute free carriers, which can be detected in Raman scattering through their effect on the strength of Si-Si bonds in the framework. These carriers can also be observed in electron paramagnetic resonance (EPR). EPR shows, however, that Li guests are not simple analogues of Na guests. In particular, our results suggest that Li atoms, with their smaller size, tend to doubly occupy cages, forming "molecular-like" pairs with other Li or Na atoms. Results of this work provide a deeper insight into Li guest atoms in Si clathrate. These findings are also relevant to understanding how Li moves through and interacts with Si clathrate anodes in Li-ion batteries. Additionally, techniques presented in this work demonstrate a new method for filling the Si clathrate cages, enabling studies of a broad range of other guests in Si clathrates.

3.
Langmuir ; 37(42): 12447-12456, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34644089

RESUMEN

Although the wettability of hydrate surfaces and hydrate film growth are key to understanding hydrate agglomeration and pipeline plugging, a quantitative understanding of the coupled behavior between both phenomena is lacking. In situ measurements of wettability coupled with film growth were performed for cyclopentane hydrate surfaces in cyclopentane at atmospheric pressure and temperatures between 1.5-6.8 °C. Results were obtained as a function of annealing (conversion) time and subcooling. Hydrate surface wettability decreased as annealing time increased, while hydrate film growth rate was unaffected by annealing time at any subcooling. The results are interpreted as a manifestation of the hydrate surface porosity, which depends on annealing time and controls water spreading on the hydrate surface. The wettability generally decreased as the subcooling increased because higher subcooling yields rougher hydrate surfaces, making it harder for water to spread. However, this effect is balanced by hydrate growth rates, which increase with subcooling. Also affecting the results, surface heating from heat release (from exothermic crystallization) allows excess surface water to promote spreading. The hydrate film growth rate on water droplets increased with subcooling, as expected from a higher driving force. At any subcooling, the instantaneous hydrate growth rate decreased over time, likely from heat transfer limitations. A new phenomenon was observed, where the angle at the three-phase point increases from the initial contact angle upon hydrate film growth, named the crystallization angle. This is attributed to the water droplet trying to spread while the thin film is weak enough to be redirected. Once the hydrate film grows and forms a "wall" around the droplet, it cannot be moved, and further growth yields a crater on the droplet surface, attributed to water penetrating the hydrate surface pore structures. This fundamental behavior has many flow assurance implications since it affects the interactions between the agglomerating hydrate particles and water droplets.

4.
Langmuir ; 37(5): 1651-1661, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33507761

RESUMEN

Gas hydrate interparticle cohesive forces are important to determine the hydrate crystal particle agglomeration behavior and subsequent hydrate slurry transport that is critical to preventing potentially catastrophic consequences of subsea oil/gas pipeline blockages. A unique high-pressure micromechanical force apparatus has been employed to investigate the effect of the molecular structure of industrially relevant hydrate antiagglomerant (AA) inhibitors on gas hydrate crystal interparticle interactions. Four AA molecules with known detailed structures [quaternary ammonium salts with two long tails (R1) and one short tail (R2)] in which the R1 has 12 carbon (C12) and 8 carbon (C8) and saturated (C-C) versus unsaturated (C═C) bonding are used in this work to investigate their interfacial activity to suppress hydrate crystal interparticle interactions in the presence of two liquid hydrocarbons (n-dodecane and n-heptane). All AAs were able to reduce the interparticle cohesive force from the baseline (23.5 ± 2.5 mN m-1), but AA-C12 shows superior performance in both liquid hydrocarbons compared to the other AAs. The interfacial measurements indicate that the AA with an R1 longer alkyl chain length can provide a denser barrier, and the AA molecules may have higher packing density when the AA R1 alkyl tail length is comparable to that of the liquid hydrocarbon chain on the gas hydrate crystal surface. Increasing the salinity can promote the effectiveness of an AA molecule and can also eliminate the effect of longer particle contact times, which typically increases the interparticle cohesive force. This work reports the first experimental investigation of high-performance known molecular structure AAs under industrially relevant conditions, showing that these molecules can reduce the interfacial tension and increase the gas hydrate-water contact angle, thereby minimizing the gas hydrate interparticle interactions. The structure-performance relation reported in this work can be used to help in the design of improved AA inhibitor molecules that will be critical to industrial hydrate crystal slurry transport.

5.
J Chem Phys ; 154(11): 114710, 2021 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-33752371

RESUMEN

Various emerging carbon capture technologies depend on being able to reliably and consistently grow carbon dioxide hydrate, particularly in packed media. However, there are limited kinetic data for carbon dioxide hydrates at this length scale. In this work, carbon dioxide hydrate propagation rates and conversion were evaluated in a high pressure silicon microfluidic device. The carbon dioxide phase boundary was first measured in the microfluidic device, which showed little deviation from bulk predictions. Additionally, measuring the phase boundary takes on the order of hours compared to weeks or longer for larger scale experimental setups. Next, propagation rates of carbon dioxide hydrate were measured in the channels at low subcoolings (<2 K from phase boundary) and moderate pressures (200-500 psi). Growth was dominated by mass transfer limitations until a critical pressure was reached, and reaction kinetics limited growth upon further increases in pressure. Additionally, hydrate conversion was estimated from Raman spectroscopy in the microfluidics channels. A maximum value of 47% conversion was reached within 1 h of a constant flow experiment, nearly 4% of the time required for similar results in a large scale system. The rapid reaction times and high throughput allowed by high pressure microfluidics provide a new way for carbon dioxide gas hydrate to be characterized.

6.
Langmuir ; 36(1): 84-95, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31820993

RESUMEN

Methane bubble dispersions in a water column can be observed in both vertical subsea piping as well as subsea gas seepages. Hydrate growth has been shown to occur at the gas-water interface under flowing conditions, yet the majority of the current literature is limited to quiescent systems. Gas hydrate risks in subsea piping have been shown to increase in late life production wells with increased water content and with gas-in-water bubble dispersions. The dissolution of subsea methane seepages into seawater, or methane release into the atmosphere, can be affected by hydrate film growth on rising bubbles. A high-pressure water tunnel (HPWT), was used to generate a turbulent, continuous water flow system representative of a vertical jumper line to study the relationship between bulk methane hydrate growth and bubble size during a production-well restart. The HPWT comprises a flow loop of 19.1 mm inner diameter and 4.9 m length, with a vertical section containing an optical window to enable visualization of the bubble and hydrate flow dynamics via a high-speed, high-resolution video camera. Additional online monitoring includes the differential pressure drop, viscosity, temperature, flow rates, and gas consumption. Experimental conditions were maintained at 275 K and 6.2 MPa during hydrate formation and 298 K and 1.4 MPa during hydrate dissociation. Hydrate growth using freshwater and saltwater (3.5 wt % NaCl) was measured at four flow velocities (0.8, 1.2, 1.6, and 1.9 m s-1). The addition of salt is shown in this work to alter the surface properties of bubbles, which introduces changes to bubble dynamics of dispersion and coalescence. Hydrate volume fractions and growth rates in the presence of salt were on average ∼32% lower compared to that in freshwater. This was observed and validated to be due to bubble size and dynamic factors and not due to the 1.5 K thermodynamic inhibition effect of salt. Throughout hydrate growth, methane bubbles in pure freshwater maintained larger diameters (2.4-4.2 mm), whereas the presence of salt promoted fine gas bubble dispersions (0.1-0.7 mm), increasing gas-water interfacial area. While gas bubble coalescence was observed in all freshwater experiments, the addition of salt limited coalescence between gas bubbles and reduced bubble size. Consequently, earlier formation of solid hydrate shells in saltwater produced early mass-transfer barriers reducing hydrate growth rates. While primarily directed toward flow assurance, the observed relationship between hydrates, bubble size, and saltwater also applies to broader research fields in subsea gas seepages and naturally occurring hydrates.

7.
Langmuir ; 33(42): 11299-11309, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-28922923

RESUMEN

The interfacial properties and mechanisms of gas hydrate systems play a major role in controlling their interparticle and surface interactions, which is desirable for nearly all energy applications of clathrate hydrates. In particular, preventing gas hydrate interparticle agglomeration and/or particle-surface deposition is critical to the prevention of gas hydrate blockages during the exploration and transportation of oil and gas subsea flow lines. These agglomeration and deposition processes are dominated by particle-particle cohesive forces and particle-surface adhesive force. In this study, we present the first direct measurements on the cohesive and adhesive forces studies of the CH4/C2H6 gas hydrate in a liquid hydrocarbon-dominated system utilizing a high-pressure micromechanical force (HP-MMF) apparatus. A CH4/C2H6 gas mixture was used as the gas hydrate former in the model liquid hydrocarbon phase. For the cohesive force baseline test, it was found that the addition of liquid hydrocarbon changed the interfacial tension and contact angle of water in the liquid hydrocarbon compared to water in the gas phase, resulting in a force of 23.5 ± 2.5 mN m-1 at 3.45 MPa and 274 K for a 2 h annealing time period in which hydrate shell growth occurs. It was observed that the cohesive force was inversely proportional to the annealing time, whereas the force increased with increasing contact time. For a longer contact time (>12 h), the force could not be measured because the two hydrate particles adhered permanently to form one large particle. The particle-surface adhesive force in the model liquid hydrocarbon was measured to be 5.3 ± 1.1 mN m-1 under the same experimental condition. Finally, with a 1 h contact time, the hydrate particle and the carbon steel (CS) surface were sintered together and the force was higher than what could be measured by the current apparatus. A possible mechanism is presented in this article to describe the effect of contact time on the particle-particle cohesive force based on the capillary liquid bridge model. A model adapted from the capillary liquid bridge equation has been used to predict the particle-particle cohesive force as a function of contact time, showing close agreement with the experimental data. By comparing the cohesive forces results from gas hydrates for both gas and liquid bulk phases, the surface free energy of a hydrate particle was calculated and found to dominate the changes in the interaction forces with different continuous bulk phases.

8.
Langmuir ; 33(42): 11436-11445, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-28926254

RESUMEN

In situ rheological measurements for clathrate hydrate slurries were performed using a high pressure rheometer to determine the effect of hydrate particles on the viscosity and transportability of these slurries. These measurements were conducted using a well-characterized model water-in-oil emulsion ( Delgado-Linares et al. Model Water in-Oil Emulsions for Gas Hydrate Studies in Oil Continuous Systems . Energy Fuels 2013 , 27 , 4564 - 4573 ). The emulsion consists of a model liquid hydrocarbon, water, and a surfactant mixture of sorbitane monooleate 80 (Span 80) and sodium di-2-ethylhexylsulfosuccinate (Aerosol OT, AOT). This emulsion was used as an analog to water-in-crude oil (w/o) emulsions and provides reproducible results. The flow properties of the model w/o emulsion prior to hydrate formation were investigated in terms of several parameters including water percentage, temperature and pressure. A general equation that describes the viscosity of the emulsion as a function of the aforementioned parameters was developed. This general equation was able to predict the viscosity of a saturated emulsion at various temperatures and water percentages to within ±13% error. The general equation was then used to analyze the effect of hydrate formation on the transportability of gas hydrate slurries. As for hydrate slurries investigation, measurements were performed using methane gas as the hydrate former and a straight vane impeller as a stirring system. Tests were conducted at constant temperature and pressure (1 °C and 1500 psig of methane) and water percentages ranging from 5 to 30 vol %. Results of this work were analyzed and presented in terms of relative values, i.e., viscosities of the slurries relative to the viscosities of the continuous phase at similar temperature and pressure. In this work, a correlation to predict the relative viscosity of a hydrate slurry at various hydrate volume fractions was developed. Analysis of the developed correlation showed that the model was able to predict the relative viscosity of a hydrate slurry to within ±17% error.

9.
Phys Chem Chem Phys ; 19(20): 13307-13315, 2017 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-28492646

RESUMEN

In order to investigate the mechanism of gas hydrate deposition and agglomeration in gas dominated flowlines, a high-pressure micromechanical force (MMF) apparatus was applied to directly measure CH4/C2H6 hydrate adhesion/cohesion forces under low temperature and high pressure conditions. A CH4/C2H6 gas mixture was used as the hydrate former. Adhesion forces between hydrate particles and carbon steel (CS) surfaces were measured, and the effects of corrosion on adhesion forces were analyzed. The influences of NaCl concentration on the cohesion force between CH4/C2H6 hydrate particles were also studied for gas-dominated systems. It was observed that there was no measurable adhesion force for pristine (no corrosion) and corroded surfaces, when there was no condensed water or water droplet on these surfaces. With water on the surface (the estimated water amount was around 1.7 µg mm-2), a hydrate film growth process was observed during the measurement. CS samples were soaked in NaCl solution to obtain different extents of corrosion on surfaces, and adhesion measurements were performed on both pristine and corroded samples. The adhesion force was found to increase with increasing soak times in 5 wt% NaCl (resulting in more visual corrosion) by up to 500%. For the effect of salinity on cohesion forces, it was found that the presence of NaCl decreased the cohesion force between hydrate particles, and a possible explanation of this phenomenon was given based on the capillary liquid bridge model.

10.
Chem Soc Rev ; 45(6): 1678-90, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26781172

RESUMEN

Gas hydrates are crystalline inclusion compounds, where molecular cages of water trap lighter species under specific thermodynamic conditions. Hydrates play an essential role in global energy systems, as both a hinderance when formed in traditional fuel production and a substantial resource when formed by nature. In both traditional and unconventional fuel production, hydrates share interfaces with a tremendous diversity of materials, including hydrocarbons, aqueous solutions, and inorganic solids. This article presents a state-of-the-art understanding of hydrate interfacial thermodynamics and growth kinetics, and the physiochemical controls that may be exerted on both. Specific attention is paid to the molecular structure and interactions of water, guest molecules, and hetero-molecules (e.g., surfactants) near the interface. Gas hydrate nucleation and growth mechanics are also presented, based on studies using a combination of molecular modeling, vibrational spectroscopy, and X-ray and neutron diffraction. The fundamental physical and chemical knowledge and methods presented in this review may be of value in probing parallel systems of crystal growth in solid inclusion compounds, crystal growth modifiers, emulsion stabilization, and reactive particle flow in solid slurries.

11.
Phys Chem Chem Phys ; 18(1): 594-600, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26618773

RESUMEN

Investigating the effect of surfactants on clathrate hydrate growth and morphology, especially particle shell strength and cohesion force, is critical to advancing new strategies to mitigate hydrate plug formation. In this study, dodecylbenzenesulfonic acid and polysorbate 80 surfactants were included during the growth of cyclopentane hydrates at several concentrations above and below the critical micelle concentration. A novel micromechanical method was applied to determine the force required to puncture the hydrate shell using a glass cantilever (with and without surfactants), with annealing times ranging from immediately after the hydrate nucleated to 90 minutes after formation. It was shown that the puncture force was decreased by the addition of both surfactants up to a maximum of 79%. Over the entire range of annealing times (0-90 minutes), the thickness of the hydrate shell was also measured. However, there was no clear change in shell thickness with the addition of surfactants. The growth rate of the hydrate shell was found to vary less than 15% with the addition of surfactants. The cohesive force between two hydrate particles was measured for each surfactant and found to be reduced by 28% to 78%. Interfacial tension measurements were also performed. Based on these results, microscopic changes to the hydrate shell morphology (due to the presence of surfactants) were proposed to cause the decrease in the force required to break the hydrate shell, since no macroscopic morphology changes were observed. Understanding the hydrate shell strength can be critical to reducing the capillary bridge interaction between hydrate particles or controlling the release of unconverted water from the interior of the hydrate particle, which can cause rapid hydrate conversion.

12.
J Chem Phys ; 145(21): 211705, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-28799342

RESUMEN

Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

13.
Phys Chem Chem Phys ; 17(30): 20021-9, 2015 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-26172876

RESUMEN

Clathrate hydrate particle agglomeration is often considered to be one of the key limiting factors in plug formation. The hydrate particle-water interaction can play a critical role in describing hydrate agglomeration, yet is severely underexplored. Therefore, this work investigates the interactions between water droplets and cyclopentane hydrate particles using a micromechanical force (MMF) apparatus. Specifically, the effect of contact time, temperature/subcooling, contact area, and the addition of Sorbitane monooleate (Span 80) surfactant on the water droplet-hydrate particle interaction behavior are studied. The measurements indicate that hydrate formation during the measurement would increase the water-hydrate interaction force significantly. The results also indicate that the contact time, subcooling and concentration of cyclopentane, which determine the hydrate formation rate and hydrate amount, will affect the hydrate-water interaction force. In addition, the interaction forces also increase with the water-hydrate contact area. The addition of Span 80 surfactant induces a change in the hydrate morphology and renders the interfaces stable versus unstable (leading to coalescence), and the contact force can affect the hydrate-water interaction behavior significantly. Compared with the hydrate-hydrate cohesion force (measured in cyclopentane), the hydrate-water adhesion force is an order of magnitude larger. These new measurements can help to provide new and critical insights into the hydrate agglomeration process and potential strategies to control this process.

14.
Phys Chem Chem Phys ; 16(28): 14922-7, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-24931508

RESUMEN

The recovery of gas from natural gas hydrates under the permafrost and in oceanic sediments is of particular interest in energy and environmental fields because of the attractive process to release methane gas through the injection of CO2. The sequestration of CO2, a notorious greenhouse gas, in hydrates has the potential to be used in enhanced gas recovery techniques, while simultaneously releasing CH4 locked within the gas bearing hydrates. In this study, we present quantitative experiments to investigate results of possible CH4-CO2 exchange kinetics from injection of liquid CO2 through CH4 hydrates. The experiments performed use CH4 hydrate formed from ice particles (75-90 or 125-150 microns in diameter) at approximately 10.34 MPa and 263 K. In order to reduce unexpected errors, nearly full conversion (>95%) of ice particles to hydrates is achieved. Liquid CO2 is injected into the pressure cell to sweep the residual CH4 atmosphere, ensuring no free CH4 is left in the gas phase. After soaking the hydrate for several hours, CH4 is produced from the hydrates by injecting liquid CO2. The final composition and analysis of the produced CH4 is measured by using in-line gas chromatography. We also measure the CH4 moles after hydrate dissociation to confirm the closure of the total mass balance of the experiment. From these data, we infer the mechanism for CH4 production, identify the penetration depth of the dissociation/exchange on the hydrate particles, and propose physical models describing the mechanism for CH4 production. These experiments are essential in the quantification of the production of CH4 from CH4 hydrates with the injection of CO2.

15.
Phys Chem Chem Phys ; 16(45): 25121-8, 2014 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-25332072

RESUMEN

Interfacial interactions between liquid-solid and solid-solid phases/surfaces are of fundamental importance to the formation of hydrate deposits in oil and gas pipelines. This work establishes the effect of five categories of physical and chemical modification to steel on clathrate hydrate adhesive force: oleamide, graphite, citric acid ester, nonanedithiol, and Rain-X anti-wetting agent. Hydrate adhesive forces were measured using a micromechanical force apparatus, under both dry and water-wet surface conditions. The results show that the graphite coating reduced hydrate-steel adhesion force by 79%, due to an increase in the water wetting angle from 42 ± 8° to 154 ± 7°. Two chemical surface coatings (nonanedithiol and the citric acid ester) induced rapid hydrate growth in the hydrate particles; nonanedithiol increased hydrate adhesive force by 49% from the baseline, while the citric acid ester coating reduced hydrate adhesion force by 98%. This result suggests that crystal growth may enable a strong adhesive pathway between hydrate and other crystalline structures, however this effect may be negated in cases where water-hydrocarbon interfacial tension is minimised. When a liquid water droplet was placed on the modified steel surfaces, the graphite and citric acid ester became less effective at reducing adhesive force. In pipelines containing a free water phase wetting the steel surface, chemical or physical surface modifications alone may be insufficient to eliminate hydrate deposition risk. In further tests, the citric acid ester reduced hydrate cohesive forces by 50%, suggesting mild activity as a hybrid anti-agglomerant suppressing both hydrate deposition and particle agglomeration. These results demonstrate a new capability to develop polyfunctional surfactants, which simultaneously limit the capability for hydrate particles to aggregate and deposit on the pipeline wall.

16.
Angew Chem Int Ed Engl ; 53(40): 10710-3, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25139731

RESUMEN

The current knowledge and description of guest molecules within clathrate hydrates only accounts for occupancy within regular polyhedral water cages. Experimental measurements and simulations, examining the tert-butylamine + H2 + H2O hydrate system, now suggest that H2 can also be incorporated within hydrate crystal structures by occupying interstitial sites, that is, locations other than the interior of regular polyhedral water cages. Specifically, H2 is found within the shared heptagonal faces of the large (4(3)5(9)6(2)7(3)) cage and in cavities formed from the disruption of smaller (4(4)5(4)) water cages. The ability of H2 to occupy these interstitial sites and fluctuate position in the crystal lattice demonstrates the dynamic behavior of H2 in solids and reveals new insight into guest-guest and guest-host interactions in clathrate hydrates, with potential implications in increasing overall energy storage properties.

17.
Lab Chip ; 24(4): 798-809, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38214152

RESUMEN

Gas hydrates form at high pressure and low temperatures in marine sediments and permafrost regions of the earth. Despite forming in nanoporous structures, gas hydrates have been extensively studied only in bulk. Understanding nucleation and growth of gas hydrates in nonporous confinement can help create ways for storage and utilization as a future energy source. Herein, we introduce a new method for studying crystal orientation/tilt during tetrahydrofuran (THF) hydrate crystallization under the influence of nano-confinement using polarized Raman spectroscopy. Uniform cylindrical nanometer size pores of anodic aluminum oxide (AAO) are used as a model nano-confinement, and hydrate experiments are performed in a glass microsystem for control of the flash hydrate nucleation kinetics and analysis via in situ polarized Raman spectroscopy. The average THF hydrate crystal tilt of 56 ± 1° and 30.5 ± 0.5° were observed for the 20 nm and 40 nm diameter pores, respectively. Crystal tilt observed in 20 and 40-nanometer-size pores was proportional to the pore diameter, resulting in lower tilt relative to the axis of the confinement at larger diameter pores. The results indicate that the hydrates nucleation and growth mechanism can depend on the nanoconfinement size. A 1.6 ± 0.01 °C to 1.8 ± 0.01 °C depression in melting point compared to the bulk is predicted using the Gibbs-Thomson equation as a direct effect of nucleation in confinement on the hydrate properties.

18.
Langmuir ; 29(35): 10997-1004, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23924434

RESUMEN

The in situ formation and flow properties of methane hydrates formed from water-in-oil microemulsions composed of water, dodecane, and aerosol OT surfactant (AOT) were studied using a unique high pressure rheometer. AOT microemulsions have high stability (order of months), well-characterized composition, and yield reproducible results compared to hydrate studies in water-in-crude oil emulsions. Viscosity increases on the order of minutes upon hydrate formation, and then decreases on the order of hours. If significant unconverted water remained after the initial formation event, then viscosity increases for a time as methane slowly dissolves and converts additional water to hydrate. In addition to transient formation measurements, yield stresses and flow curves are measured for a set of experimental conditions. Hydrate slurry viscosity and yield stress increase with increasing water volume fraction, increasing initial pressure, decreasing temperature, and decreasing formation shear rate.

19.
Langmuir ; 29(8): 2676-82, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23363244

RESUMEN

Gas hydrates represent an unconventional methane resource and a production/safety risk to traditional oil and gas flowlines. In both systems, hydrate may share interfaces with both aqueous and hydrocarbon fluids. To accurately model macroscopic properties, such as relative permeability in unconventional systems or dispersion viscosity in traditional systems, knowledge of hydrate interfacial properties is required. This work presents hydrate cohesive force results measured on a micromechanical force apparatus, and complementary water-hydrocarbon interfacial tension data. By combining a revised cohesive force model with experimental data, two interfacial properties of cyclopentane hydrate were estimated: hydrate-water and hydrate-cyclopentane interfacial tension values at 0.32 ± 0.05 mN/m and 47 ± 5 mN/m, respectively. These fundamental physiochemical properties have not been estimated or measured for cyclopentane hydrate to date. The addition of surfactants in the cyclopentane phase significantly reduced the cyclopentane hydrate cohesive force; we hypothesize this behavior to be the result of surfactant adsorption on the hydrate-oil interface. Surface excess quantities were estimated for hydrate-oil and water-oil interfaces using four carboxylic and sulfonic acids. The results suggest the density of adsorbed surfactant may be 2× larger for the hydrate-oil interface than the water-oil interface. Additionally, hydrate-oil interfacial tension was observed to begin decreasing from the baseline value at significantly lower surfactant concentrations (1-3 orders of magnitude) than those for the water-oil interfacial tension.


Asunto(s)
Ciclopentanos/química , Tensoactivos/química , Agua/química , Adsorción , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
20.
Langmuir ; 29(50): 15551-7, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24266729

RESUMEN

Clathrate hydrate adhesion forces play a critical role in describing aggregation and deposition behavior in conventional energy production and transportation. This manuscript uses a unique micromechanical force apparatus to measure the adhesion force between cyclopentane hydrate and heterogeneous quartz and calcite substrates. The latter substrates represent models for coproduced sand and scale often present during conventional energy production and transportation. Micromechanical adhesion force data indicate that clathrate hydrate adhesive forces are 5-10× larger for calcite and quartz minerals than stainless steel. Adhesive forces further increased by 3-15× when increasing surface contact time from 10 to 30 s. In some cases, liquid water from within the hydrate shell contacted the mineral surface and rapidly converted to clathrate hydrate. Further measurements on mineral surfaces with physical control of surface roughness showed a nonlinear dependence of water wetting angle on surface roughness. Existing adhesive force theory correctly predicted the dependence of clathrate hydrate adhesive force on calcite wettability, but did not accurately capture the dependence on quartz wettability. This comparison suggests that the substrate surface may not be inert, and may contribute positively to the strength of the capillary bridge formed between hydrate particles and solid surfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA