Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microsc Microanal ; 29(3): 919-930, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37749692

RESUMEN

We measure the mean inner potential (MIP) of hematite, α-Fe2O3, using electron holography and transmission electron microscopy. Since the MIP is sensitive to valence electrons, we propose its use as a chemical bonding parameter for solids. Hematite can test the sensitivity of the MIP as a bonding parameter because of the Morin magnetic phase transition. Across this transition temperature, no change in the corundum crystal structure can be distinguished, while a change in hybridized Fe-3d and O-2p states was reported, affecting ionic bonding. For a given crystallographic phase, the change in the MIP with temperature is expected to be minor due to thermal expansion. Indeed, we measure the temperature dependence in corundum α-Al2O3(112¯0) between 95 and 295 K showing a constant MIP value of ∼16.8 V within the measurement accuracy of 0.45 V. Thus, our objectives are as follows: measure the MIP of hematite as a function of temperature and examine the sensitivity of the MIP as a bonding parameter for crystals. Measured MIPs of α-Fe2O3(112¯0) above the Morin transition are equal, 17.85 ± 0.50 V, 17.93 ± 0.50 V, at 295 K, 230 K, respectively. Below the Morin transition, at 95 K, a significant reduction of ∼1.3 V is measured to 16.56 ± 0.46 V. We show that this reduction follows charge redistribution resulting in increased ionic bonding.

2.
Nano Lett ; 17(5): 2778-2787, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28388052

RESUMEN

We synthesized PbS core-CdS arm nanomultipod heterostructures (NMHs) that exhibit PbS{111}/CdS{0002} epitaxial relations. The PbS-CdS interface is chemically sharp as determined by aberration corrected transmission electron microscopy (TEM) and compared to density functional theory (DFT) calculations. Ensemble fluorescence measurements show quenching of the optical signal from the CdS arms indicating charge separation due to the heterojunction with PbS. A finite-element three-dimensional (3D) calculation of the Poisson equation shows a type-I heterojunction, which would prevent recombination in the CdS arm after optical excitation. To examine charge redistribution, we used off-axis electron holography (OAEH) in the TEM to map the electrostatic potential across an individual heterojunction. Indeed, a built-in potential of 500 mV is estimated across the junction, though as opposed to the thermal equilibrium calculations significant accumulation of positive charge at the CdS side of the interface is detected. We conclude that the NMH multipod geometry prevents efficient removal of generated charge carriers by the high energy electrons of the TEM. Simulations of generated electron-hole pairs in the insulated CdS arm of the NMH indeed show charge accumulation in agreement with the experimental measurements. Thus, we show that OAEH can be used as a complementary methodology to ensemble measurements by mapping the charge distribution in single NMHs with complex geometries.

3.
Ultramicroscopy ; 249: 113737, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37037087

RESUMEN

The introduction of direct electron detectors (DEDs) to transmission electron microscopy has set off the 'resolution revolution', especially for cryoTEM low-dose imaging of soft matter. In comparison to traditional indirect electron detectors such as Charged-Coupled Devices (CCD), DEDs show an improved modulation transfer function (MTF) and detective quantum efficiency (DQE) across all spatial frequencies, as well as faster frame rates which enable single electron counting. The benefits of such characteristics for imaging, spectroscopy and electron holography have been demonstrated previously. However, studies are lacking on the application of DEDs for localized characterization of short- to medium- range-order (SRO, MRO) in amorphous materials using electron scattering. Therefore, we evaluate the performance of a Monolithic Active Pixel Sensor DED for the characterization of SRO and MRO in nanoscale volumes of amorphous materials, using SiO2 and Ta2O5 thin films as test cases. The performance of the detector is compared systematically to electron scattering measurements recorded on an indirect detector (CCD) using 200 keV electrons and electron doses starting at approximately 500e-Å2 . In addition, the effects of sample cooling and energy-filtering on the measured SRO of the oxides were investigated. We demonstrate that the performance of the DED resulted in improved SRO characterization in comparison to that obtained from the CCD measurements. The DED enabled to achieve a larger measured maximal scattering vector, ∼16.51Å compared to ∼151Å, for the CCD. Furthermore, an improved signal-to-noise ratio of approximately two-fold was observed across all spatial frequencies for both 200 keV and 80 keV electrons. These improvements are shown to result from the superior DQE of the DED. Consequently, the DED measurements enabled to determine the coordination numbers of atomic bonds more accurately. We expect that further benefits of the DED for S/MRO characterization will be highlighted for ultra- sensitive materials that cannot withstand electron doses above several e-Å2 .

4.
Ultramicroscopy ; 240: 113570, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35700667

RESUMEN

Quantitative transmission electron microscopy (TEM) often requires accurate knowledge of sample thickness for determining defect density, structure factors, sample dimensions, electron beam and X-ray photons signal broadening. The most common thickness measurement is by Electron Energy Loss Spectroscopy which can be applied effectively to crystalline and amorphous materials. The drawback is that sample thickness is measured in units of Inelastic Mean Free Path (MFP) which depends on the material, the electron energy and the collection angle of the spectrometer. Furthermore, the Elastic MFP is an essential parameter for selecting optimal sample thickness to reduce dynamical scatterings, such as for short-range-order characterization of amorphous materials. Finally, the Inelastic to Elastic MFP ratio can predict the dominant mechanism for radiation damage due to the electron beam. We implement a fast and precise method for the extraction of inelastic and elastic MFP values in technologically important oxide thin films. The method relies on the crystalline Si substrate for calibration. The Inelastic MFP of Si was measured as a function of collection semi-angle (ß) by combining Energy-Filtered TEM thickness maps followed by perpendicular cross-sectioning of the sample by Focused-Ion-Beam. For example, we measured a total Inelastic MFP (ß∼157 mrad) in Si of 145 ± 10 nm for 200 keV electrons. The MFP of the thin oxide films is determined by their ratio at their interface with Si or SiO2. The validity of this method was verified by direct TEM observation of cross-to-cross sectioning of TEM samples. The high precision of this method was enabled mainly by implementing a wedge preparation technique, which provides large sampling areas with uniform thickness. We measured the Elastic and Inelastic Mean Free Paths for 200 keV and 80 keV electrons as a function of collection angle for: SiO2 (Thermal, CVD), low-κ SiOCH, Al2O3, TiO2, ZnO, Ta2O5 and HfO2. The measured MFP values were compared to calculations based on models of Wenzel, Malis and Iakoubovskii. These models deviate from measurements by up to 30%, especially for 80 keV electrons. Hence, we propose functional relations for the Elastic MFP and Inelastic MFP in oxides with respect to the mass density and effective atomic number, which reduce deviations by a factor of 2-3. In addition, the effects of sample cooling on the measurements and sample stability are examined.

5.
Nanomaterials (Basel) ; 11(5)2021 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-34065681

RESUMEN

We report the epitaxial formation of metastable γ-(FexNi1-x)Si2 nanostructure arrays resulting from the reaction of Ni80Fe20 permalloy with vicinal Si(111) surface atoms. We then explore the effect of structure and composition on the nanostructure's magnetic properties. The low-temperature annealing (T < 600 °C) of a pre-deposited permalloy film led to solid-phase epitaxial nucleation of compact disk-shaped island nanostructures decorating <110> ledges of the stepped surface, with either (2 × 2) or (3×3) R30° reconstructed flat top faces. High resolution scanning transmission electron microscopy analysis demonstrated fully coherent epitaxy of the islands with respect to the substrate, consistent with a well-matched CaF2-prototype structure associated with γ-FeSi2, along perfect atomically sharp interfaces. Energy dispersive spectroscopy detected ternary composition of the islands, with Fe and Ni atoms confined to the islands, and no trace of segregation. Our magnetometry measurements revealed the superparamagnetic behavior of the silicide islands, with a blocking temperature around 30 K, reflecting the size, shape, and dilute arrangement of the islands in the assembly.

6.
Ultramicroscopy ; 198: 18-25, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30634077

RESUMEN

The mean inner potential (MIP) of a single crystal α-Al2O3 sapphire was measured using off-axis electron holography. To measure the MIP, we use mechanically polished wedge specimens for transmission electron microscopy (TEM). This approach also enabled us to measure the plasmon mean free path for inelastic scattering (IMFP). The wedge specimen, chosen here at an angle of approximately 45°, allows to determine the MIP by measuring the gradient of phase variations of the reconstructed electron wave over extended regions across the sample. The angle of the wedge was measured to an accuracy of better than 1° by two methods: first, perpendicular sectioning in a focused ion beam for direct measurement by TEM and second, by a non-destructive approach of confocal optical microscopy. The validity of this methodology was examined on a single crystal Si(001) sample showing that the mechanically polished wedge approach can be applied to a wide range of materials. Our measurements concluded that the MIP of sapphire is V0 = 16.90 ±â€¯0.36 V. Furthermore, the IMFP of sapphire was measured at 136 ±â€¯2 nm for 197 keV electrons with a collection angle of 18mrad. The measured MIP of sapphire reflects its degree of ionicity, which lies between theoretical calculations based on electron scattering factors of charged and neutral isolated atoms obtained by Dirac-Fock calculations. Our MIP measurements tend to the expected value for this predominantly ionic material. To account for chemical bonding and the role of the crystallographic plane at the surface of the sample, we compared the experimental measurements to density-functional-theory calculations of the MIP. Calculations of α-Al2O3 slabs cut along (0001) and (1-100) planes obtained MIP values of 15.7 V and 16.7 V, respectively.

7.
Ultramicroscopy ; 160: 44-56, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26452194

RESUMEN

The 'transport-of-intensity' equation (TIE) is a general phase reconstruction methodology that can be applied to Lorentz transmission electron microscopy (TEM) through the use of Fresnel-contrast (defocused) images. We present an experimental study to test the application of the TIE for quantitative magnetic mapping in Lorentz TEM without aberration correction by examining sub-micrometer sized Ni80Fe20 (Permalloy) elements. For a JEOL JEM 2100F adapted for Lorentz microscopy, we find that quantitative magnetic phase reconstructions are possible for defoci distances ranging between approximately 200 µm and 800 µm. The lower limit originates from competing sources of image intensity variations in Fresnel-contrast images, namely structural defects and diffraction contrast. The upper defocus limit is due to a numerical error in the estimation of the intensity derivative based on three images. For magnetic domains, we show quantitative reconstructions of the product of the magnetic induction vector and thickness in element sizes down to approximately 100 nm in lateral size and 5 nm thick resulting in a minimal detection of 5Tnm. Three types of magnetic structures are tested in terms of phase reconstruction: vortex cores, domain walls, and element edges. We quantify vortex core structures at a diameter of 12 nm while the structures of domain walls and element edges are characterized qualitatively. Finally, we show by image simulations that the conclusions of this experimental study are relevant to other Lorentz TEM in which spherical aberration and defocus are dominant aberrations.

8.
Ultramicroscopy ; 138: 36-45, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24486529

RESUMEN

Modern semiconductor devices function due to accurate dopant distribution. Off-Axis Electron Holography (OAEH) in the transmission electron microscope (TEM) can map quantitatively the electrostatic potential in semiconductors with high spatial resolution. For the microelectronics industry, ongoing reduction of device dimensions, 3D device geometry, and failure analysis of specific devices require preparation of thin TEM samples, under 70 nm thick, by focused ion beam (FIB). Such thicknesses, which are considerably thinner than the values reported to date in the literature, are challenging due to FIB induced damage and surface depletion effects. Here, we report on preparation of TEM samples of silicon PN junctions in the FIB completed by low-energy (5 keV) ion milling, which reduced amorphization of the silicon to 10nm thick. Additional perpendicular FIB sectioning enabled a direct measurement of the TEM sample thickness in order to determine accurately the crystalline thickness of the sample. Consequently, we find that the low-energy milling also resulted in a negligible thickness of electrically inactive regions, approximately 4nm thick. The influence of TEM sample thickness, FIB induced damage and doping concentrations on the accuracy of the OAEH measurements were examined by comparison to secondary ion mass spectrometry measurements as well as to 1D and 3D simulations of the electrostatic potentials. We conclude that for TEM samples down to 100 nm thick, OAEH measurements of Si-based PN junctions, for the doping levels examined here, resulted in quantitative mapping of potential variations, within ~0.1 V. For thinner TEM samples, down to 20 nm thick, mapping of potential variations is qualitative, due to a reduced accuracy of ~0.3 V. This article is dedicated to the memory of Zohar Eliyahou.

9.
ACS Nano ; 8(8): 8357-62, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25030217

RESUMEN

The bottom-up synthesis of nanoscale building blocks is a versatile approach for the formation of a vast array of materials with controlled structures and compositions. This approach is one of the main driving forces for the immense progress in materials science and nanotechnology witnessed over the past few decades. Despite the overwhelming advances in the bottom-up synthesis of nanoscale building blocks and the fine control of accessible compositions and structures, certain aspects are still lacking. In particular, the transformation of symmetric nanostructures to asymmetric nanostructures by highly controlled processes while preserving the modified structural orientation still poses a significant challenge. We present a one-step ex situ doping process for the transformation of undoped silicon nanowires (i-Si NWs) to p-type/n-type (p-n) parallel p-n junction configuration across NWs. The vertical p-n junctions were measured by scanning tunneling microscopy (STM) in concert with scanning tunneling spectroscopy (STS), termed STM/S, to obtain the spatial electronic properties of the junction formed across the NWs. Additionally, the parallel p-n junction configuration was characterized by off-axis electron holography in a transmission electron microscope to provide an independent verification of junction formation. The doping process was simulated to elucidate the doping mechanisms involved in the one-step p-i-n junction formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA