Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338691

RESUMEN

Tight junction (TJ) protein cingulin (CGN) and transcription factor forkhead box protein O1 (FOXO1) contribute to the development of various cancers. Histone deacetylase (HDAC) inhibitors have a potential therapeutic role for some cancers. HDAC inhibitors affect the expression of both CGN and FOXO1. However, the roles and regulatory mechanisms of CGN and FOXO1 are unknown in non-small cell lung cancer (NSCLC) and normal human lung epithelial (HLE) cells. In the present study, to investigate the effects of CGN and FOXO1 on the malignancy of NSCLC, we used A549 cells as human lung adenocarcinoma and primary human lung epithelial (HLE) cells as normal lung tissues and performed the knockdown of CGN and FOXO1 by siRNAs. Furthermore, to investigate the detailed mechanisms in the antitumor effects of HDAC inhibitors for NSCLC via CGN and FOXO1, A549 cells and HLE cells were treated with the HDAC inhibitors trichostatin A (TSA) and Quisinostat (JNJ-2648158). In A549 cells, the knockdown of CGN increased bicellular TJ protein claudin-2 (CLDN-2) via mitogen-activated protein kinase/adenosine monophosphate-activated protein kinase (MAPK/AMPK) pathways and induced cell migration, while the knockdown of FOXO1 increased claudin-4 (CLDN-4), decreased CGN, and induced cell proliferation. The knockdown of CGN and FOXO1 induced cell metabolism in A549 cells. TSA and Quisinostat increased CGN and tricellular TJ protein angulin-1/lipolysis-stimulated lipoprotein receptor (LSR) in A549. In normal HLE cells, the knockdown of CGN and FOXO1 increased CLDN-4, while HDAC inhibitors increased CGN and CLDN-4. In conclusion, the knockdown of CGN via FOXO1 contributes to the malignancy of NSCLC. Both HDAC inhibitors, TSA and Quisinostat, may have potential for use in therapy for lung adenocarcinoma via changes in the expression of CGN and FOXO1.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Proteína Forkhead Box O1 , Ácidos Hidroxámicos , Neoplasias Pulmonares , Proteínas de Uniones Estrechas , Humanos , Células A549 , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Células Epiteliales/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/metabolismo , Pulmón/patología , Neoplasias Pulmonares/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Factores de Transcripción/metabolismo
2.
Tissue Barriers ; : 2361976, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825958

RESUMEN

The bicellular tight junction molecule cingulin (CGN) binds to microtubules in centrosomes. Furthermore, CGN contributes to the tricellular tight junction (tTJ) proteins lipolysis-stimulated lipoprotein receptor (LSR) and tricellulin (TRIC). CGN as well as LSR decreased during the malignancy of endometrioid endometrial cancer (EEC). Although tTJ protein LSR is involved in the malignancy of some cancers, including EEC, the role of CGN is unknown. In this study, we investigated the roles of CGN with tTJ proteins in human EEC cells by using the CGN-overexpressing EEC cell line Sawano. In 2D cultures, CGN was colocalized with LSR and TRIC at tTJ or at γ-tubulin-positive centrosomes. In immunoprecipitation with CGN antibodies, CGN directly bound to LSR, TRIC, and ß-tubulin. Knockdown of CGN by the siRNA decreased the epithelial barrier and enhanced cell proliferation, migration and invasion, as well as knockdown of LSR. In the Sawano cells cocultured with normal human endometrial stromal cells, knockdown of CGN decreased expression of LSR and TRIC via MAPK and AMPK pathways. In 2.5D cultures, knockdown of CGN induced the formation of abnormal cysts and increased the permeability of FD-4 to the lumen. In 2D and 2.5D cultures, treatment with ß-estradiol with or without EGF or TGF-ß decreased CGN expression and the epithelial permeability barrier and enhanced cell migration, and pretreatment with EW7197+AG1478, U0126 or an anti-IL-6 antibody prevented this. In conclusion, CGN, with tTJ proteins might suppress the malignancy of human EEC and its complex proteins are sensitive to estrogen and growth factors derived from stromal cells.

3.
Tissue Barriers ; : 2304443, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225862

RESUMEN

It is known that there are abnormalities of tight junction functions, cell migration and mitochondrial metabolism in human endometriosis and endometrial carcinoma. In this study, we investigated the effects of growth factors and their inhibitors on the epithelial permeability barrier, cell migration and mitochondrial metabolism in 2D and 2.5D cultures of human endometrioid endometrial carcinoma Sawano cells. We also investigated the changes of bicellular and tricellular tight junction molecules and ciliogenesis induced by these inhibitors. The growth factors TGF-ß and EGF affected the epithelial permeability barrier, cell migration and expression of bicellular and tricellular tight junction molecules in 2D and 2.5D cultures of Sawano cells. EW-7197 (a TGF-ß receptor inhibitor), AG1478 (an EGFR inhibitor) and SP600125 (a JNK inhibitor) affected the epithelial permeability barrier, cell migration and mitochondrial metabolism and prevented the changes induced by TGF-ß and EGF in 2D and 2.5D cultures. EW-7197 and AG1478 induced ciliogenesis in 2.5D cultures. In conclusion, TGF-ß and EGF promoted the malignancy of endometrial cancer via interplay among the epithelial permeability barrier, cell migration and mitochondrial metabolism. EW-7197 and AG1478 may be useful as novel therapeutic treatments options for endometrial cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA