Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Diabetologia ; 66(6): 1057-1070, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36826505

RESUMEN

AIMS/HYPOTHESIS: The aim of this study was to identify differentially expressed long non-coding RNAs (lncRNAs) and mRNAs in whole blood of people with type 2 diabetes across five different clusters: severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD), mild obesity-related diabetes (MOD), mild diabetes (MD) and mild diabetes with high HDL-cholesterol (MDH). This was to increase our understanding of different molecular mechanisms underlying the five putative clusters of type 2 diabetes. METHODS: Participants in the Hoorn Diabetes Care System (DCS) cohort were clustered based on age, BMI, HbA1c, C-peptide and HDL-cholesterol. Whole blood RNA-seq was used to identify differentially expressed lncRNAs and mRNAs in a cluster compared with all others. Differentially expressed genes were validated in the Innovative Medicines Initiative DIabetes REsearCh on patient straTification (IMI DIRECT) study. Expression quantitative trait loci (eQTLs) for differentially expressed RNAs were obtained from a publicly available dataset. To estimate the causal effects of RNAs on traits, a two-sample Mendelian randomisation analysis was performed using public genome-wide association study (GWAS) data. RESULTS: Eleven lncRNAs and 175 mRNAs were differentially expressed in the MOD cluster, the lncRNA AL354696.2 was upregulated in the SIDD cluster and GPR15 mRNA was downregulated in the MDH cluster. mRNAs and lncRNAs that were differentially expressed in the MOD cluster were correlated among each other. Six lncRNAs and 120 mRNAs validated in the IMI DIRECT study. Using two-sample Mendelian randomisation, we found 52 mRNAs to have a causal effect on anthropometric traits (n=23) and lipid metabolism traits (n=10). GPR146 showed a causal effect on plasma HDL-cholesterol levels (p = 2×10-15), without evidence for reverse causality. CONCLUSIONS/INTERPRETATION: Multiple lncRNAs and mRNAs were found to be differentially expressed among clusters and particularly in the MOD cluster. mRNAs in the MOD cluster showed a possible causal effect on anthropometric traits, lipid metabolism traits and blood cell fractions. Together, our results show that individuals in the MOD cluster show aberrant RNA expression of genes that have a suggested causal role on multiple diabetes-relevant traits.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insulinas , ARN Largo no Codificante , Humanos , Diabetes Mellitus Tipo 2/genética , Metabolismo de los Lípidos/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Estudio de Asociación del Genoma Completo , HDL-Colesterol , Expresión Génica , Obesidad/complicaciones , Obesidad/genética , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
2.
J Lipid Res ; 63(5): 100193, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35278410

RESUMEN

Triglyceride (TG)-lowering LPL variants in combination with genetic LDL-C-lowering variants are associated with reduced risk of coronary artery disease (CAD). Genetic variation in the APOA5 gene encoding apolipoprotein A-V also strongly affects TG levels, but the potential clinical impact and underlying mechanisms are yet to be resolved. Here, we aimed to study the effects of APOA5 genetic variation on CAD risk and plasma lipoproteins through factorial genetic association analyses. Using data from 309,780 European-ancestry participants from the UK Biobank, we evaluated the effects of lower TG levels as a result of genetic variation in APOA5 and/or LPL on CAD risk with or without a background of reduced LDL-C. Next, we compared lower TG levels via APOA5 and LPL variation with over 100 lipoprotein measurements in a combined sample from the Netherlands Epidemiology of Obesity study (N = 4,838) and the Oxford Biobank (N = 6,999). We found that lower TG levels due to combined APOA5 and LPL variation and genetically-influenced lower LDL-C levels afforded the largest reduction in CAD risk (odds ratio: 0.78 (0.73-0.82)). Compared to patients with genetically-influenced lower TG via LPL, genetically-influenced lower TG via APOA5 had similar and independent, but notably larger, effects on the lipoprotein profile. Our results suggest that lower TG levels as a result of APOA5 variation have strong beneficial effects on CAD risk and the lipoprotein profile, which suggest apo A-V may be a potential novel therapeutic target for CAD prevention.


Asunto(s)
Apolipoproteína A-V/metabolismo , Enfermedad de la Arteria Coronaria , Apolipoproteína A-V/genética , Apolipoproteínas A/genética , LDL-Colesterol , Enfermedad de la Arteria Coronaria/genética , Humanos , Lipoproteínas , Triglicéridos
4.
Diabetologia ; 63(4): 744-756, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32002573

RESUMEN

AIMS/HYPOTHESIS: It is well established that physical activity, abdominal ectopic fat and glycaemic regulation are related but the underlying structure of these relationships is unclear. The previously proposed twin-cycle hypothesis (TC) provides a mechanistic basis for impairment in glycaemic control through the interactions of substrate availability, substrate metabolism and abdominal ectopic fat accumulation. Here, we hypothesise that the effect of physical activity in glucose regulation is mediated by the twin-cycle. We aimed to examine this notion in the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI DIRECT) Consortium cohorts comprised of participants with normal or impaired glucose regulation (cohort 1: N ≤ 920) or with recently diagnosed type 2 diabetes (cohort 2: N ≤ 435). METHODS: We defined a structural equation model that describes the TC and fitted this within the IMI DIRECT dataset. A second model, twin-cycle plus physical activity (TC-PA), to assess the extent to which the effects of physical activity in glycaemic regulation are mediated by components in the twin-cycle, was also fitted. Beta cell function, insulin sensitivity and glycaemic control were modelled from frequently sampled 75 g OGTTs (fsOGTTs) and mixed-meal tolerance tests (MMTTs) in participants without and with diabetes, respectively. Abdominal fat distribution was assessed using MRI, and physical activity through wrist-worn triaxial accelerometry. Results are presented as standardised beta coefficients, SE and p values, respectively. RESULTS: The TC and TC-PA models showed better fit than null models (TC: χ2 = 242, p = 0.004 and χ2 = 63, p = 0.001 in cohort 1 and 2, respectively; TC-PA: χ2 = 180, p = 0.041 and χ2 = 60, p = 0.008 in cohort 1 and 2, respectively). The association of physical activity with glycaemic control was primarily mediated by variables in the liver fat cycle. CONCLUSIONS/INTERPRETATION: These analyses partially support the mechanisms proposed in the twin-cycle model and highlight mechanistic pathways through which insulin sensitivity and liver fat mediate the association between physical activity and glycaemic control.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Homeostasis/fisiología , Anciano , Glucemia/metabolismo , Estudios de Cohortes , Estudios Transversales , Dinamarca/epidemiología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/terapia , Femenino , Finlandia/epidemiología , Prueba de Tolerancia a la Glucosa , Control Glucémico , Humanos , Resistencia a la Insulina , Masculino , Persona de Mediana Edad , Países Bajos/epidemiología , Suecia/epidemiología
5.
PLoS Med ; 17(6): e1003149, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32559194

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular carcinomas. We sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning. METHODS AND FINDINGS: We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of 3,029 European-ancestry adults recently diagnosed with T2D (n = 795) or at high risk of developing the disease (n = 2,234). Multi-omics (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI-image-derived liver fat content (<5% or ≥5%) available for 1,514 participants. We applied LASSO (least absolute shrinkage and selection operator) to select features from the different layers of omics data and random forest analysis to develop the models. The prediction models included clinical and omics variables separately or in combination. A model including all omics and clinical variables yielded a cross-validated receiver operating characteristic area under the curve (ROCAUC) of 0.84 (95% CI 0.82, 0.86; p < 0.001), which compared with a ROCAUC of 0.82 (95% CI 0.81, 0.83; p < 0.001) for a model including 9 clinically accessible variables. The IMI DIRECT prediction models outperformed existing noninvasive NAFLD prediction tools. One limitation is that these analyses were performed in adults of European ancestry residing in northern Europe, and it is unknown how well these findings will translate to people of other ancestries and exposed to environmental risk factors that differ from those of the present cohort. Another key limitation of this study is that the prediction was done on a binary outcome of liver fat quantity (<5% or ≥5%) rather than a continuous one. CONCLUSIONS: In this study, we developed several models with different combinations of clinical and omics data and identified biological features that appear to be associated with liver fat accumulation. In general, the clinical variables showed better prediction ability than the complex omics variables. However, the combination of omics and clinical variables yielded the highest accuracy. We have incorporated the developed clinical models into a web interface (see: https://www.predictliverfat.org/) and made it available to the community. TRIAL REGISTRATION: ClinicalTrials.gov NCT03814915.


Asunto(s)
Hígado Graso/etiología , Aprendizaje Automático , Complicaciones de la Diabetes/etiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Estudios Prospectivos , Reproducibilidad de los Resultados , Medición de Riesgo
6.
Diabetologia ; 62(9): 1601-1615, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31203377

RESUMEN

AIMS/HYPOTHESIS: Here, we describe the characteristics of the Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) epidemiological cohorts at baseline and follow-up examinations (18, 36 and 48 months of follow-up). METHODS: From a sampling frame of 24,682 adults of European ancestry enrolled in population-based cohorts across Europe, participants at varying risk of glycaemic deterioration were identified using a risk prediction algorithm (based on age, BMI, waist circumference, use of antihypertensive medication, smoking status and parental history of type 2 diabetes) and enrolled into a prospective cohort study (n = 2127) (cohort 1, prediabetes risk). We also recruited people from clinical registries with type 2 diabetes diagnosed 6-24 months previously (n = 789) into a second cohort study (cohort 2, diabetes). Follow-up examinations took place at ~18 months (both cohorts) and at ~48 months (cohort 1) or ~36 months (cohort 2) after baseline examinations. The cohorts were studied in parallel using matched protocols across seven clinical centres in northern Europe. RESULTS: Using ADA 2011 glycaemic categories, 33% (n = 693) of cohort 1 (prediabetes risk) had normal glucose regulation and 67% (n = 1419) had impaired glucose regulation. Seventy-six per cent of participants in cohort 1 was male. Cohort 1 participants had the following characteristics (mean ± SD) at baseline: age 62 (6.2) years; BMI 27.9 (4.0) kg/m2; fasting glucose 5.7 (0.6) mmol/l; 2 h glucose 5.9 (1.6) mmol/l. At the final follow-up examination the participants' clinical characteristics were as follows: fasting glucose 6.0 (0.6) mmol/l; 2 h OGTT glucose 6.5 (2.0) mmol/l. In cohort 2 (diabetes), 66% (n = 517) were treated by lifestyle modification and 34% (n = 272) were treated with metformin plus lifestyle modification at enrolment. Fifty-eight per cent of participants in cohort 2 was male. Cohort 2 participants had the following characteristics at baseline: age 62 (8.1) years; BMI 30.5 (5.0) kg/m2; fasting glucose 7.2 (1.4) mmol/l; 2 h glucose 8.6 (2.8) mmol/l. At the final follow-up examination, the participants' clinical characteristics were as follows: fasting glucose 7.9 (2.0) mmol/l; 2 h mixed-meal tolerance test glucose 9.9 (3.4) mmol/l. CONCLUSIONS/INTERPRETATION: The IMI DIRECT cohorts are intensely characterised, with a wide-variety of metabolically relevant measures assessed prospectively. We anticipate that the cohorts, made available through managed access, will provide a powerful resource for biomarker discovery, multivariate aetiological analyses and reclassification of patients for the prevention and treatment of type 2 diabetes.


Asunto(s)
Biomarcadores/sangre , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Anciano , Glucemia/efectos de los fármacos , Estudios de Cohortes , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/epidemiología , Femenino , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Humanos , Masculino , Metformina/uso terapéutico , Persona de Mediana Edad , Estado Prediabético/sangre , Estado Prediabético/epidemiología , Estudios Prospectivos
7.
Diabetes Obes Metab ; 19(3): 356-363, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27862873

RESUMEN

AIMS: To investigate, in the Carotid Atherosclerosis: Metformin for Insulin Resistance (CAMERA) trial (NCT00723307), whether the influence of metformin on the glucagon-like peptide (GLP)-1 axis in individuals with and without type 2 diabetes (T2DM) is sustained and related to changes in glycaemia or weight, and to investigate basal and post-meal GLP-1 levels in patients with T2DM in the cross-sectional Diabetes Research on Patient Stratification (DIRECT) study. MATERIALS AND METHODS: CAMERA was a double-blind randomized placebo-controlled trial of metformin in 173 participants without diabetes. Using 6-monthly fasted total GLP-1 levels over 18 months, we evaluated metformin's effect on total GLP-1 with repeated-measures analysis and analysis of covariance. In the DIRECT study, we examined active and total fasting and 60-minute post-meal GLP-1 levels in 775 people recently diagnosed with T2DM treated with metformin or diet, using Student's t-tests and linear regression. RESULTS: In CAMERA, metformin increased total GLP-1 at 6 (+20.7%, 95% confidence interval [CI] 4.7-39.0), 12 (+26.7%, 95% CI 10.3-45.6) and 18 months (+18.7%, 95% CI 3.8-35.7), an overall increase of 23.4% (95% CI 11.2-36.9; P < .0001) vs placebo. Adjustment for changes in glycaemia and adiposity, individually or combined, did not attenuate this effect. In the DIRECT study, metformin was associated with higher fasting active (39.1%, 95% CI 21.3-56.4) and total GLP-1 (14.1%, 95% CI 1.2-25.9) but not post-meal incremental GLP-1. These changes were independent of potential confounders including age, sex, adiposity and glycated haemoglobin. CONCLUSIONS: In people without diabetes, metformin increases total GLP-1 in a sustained manner and independently of changes in weight or glycaemia. Metformin-treated patients with T2DM also have higher fasted GLP-1 levels, independently of weight and glycaemia.


Asunto(s)
Glucemia/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Péptido 1 Similar al Glucagón/efectos de los fármacos , Hipoglucemiantes/farmacología , Metformina/farmacología , Adulto , Anciano , Glucemia/metabolismo , Peso Corporal/efectos de los fármacos , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Método Doble Ciego , Ayuno/metabolismo , Femenino , Péptido 1 Similar al Glucagón/metabolismo , Hemoglobina Glucada/efectos de los fármacos , Hemoglobina Glucada/metabolismo , Humanos , Hipoglucemiantes/uso terapéutico , Péptidos y Proteínas de Señalización Intercelular , Masculino , Metformina/uso terapéutico , Persona de Mediana Edad , Péptidos , Periodo Posprandial/efectos de los fármacos
8.
PLoS Genet ; 10(6): e1004388, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24922540

RESUMEN

Recent genome-wide meta-analyses identified 157 loci associated with cross-sectional lipid traits. Here we tested whether these loci associate (singly and in trait-specific genetic risk scores [GRS]) with longitudinal changes in total cholesterol (TC) and triglyceride (TG) levels in a population-based prospective cohort from Northern Sweden (the GLACIER Study). We sought replication in a southern Swedish cohort (the MDC Study; N = 2,943). GLACIER Study participants (N = 6,064) were genotyped with the MetaboChip array. Up to 3,495 participants had 10-yr follow-up data available in the GLACIER Study. The TC- and TG-specific GRSs were strongly associated with change in lipid levels (ß = 0.02 mmol/l per effect allele per decade follow-up, P = 2.0 × 10(-11) for TC; ß = 0.02 mmol/l per effect allele per decade follow-up, P = 5.0 × 10(-5) for TG). In individual SNP analysis, one TC locus, apolipoprotein E (APOE) rs4420638 (ß = 0.12 mmol/l per effect allele per decade follow-up, P = 2.0 × 10(-5)), and two TG loci, tribbles pseudokinase 1 (TRIB1) rs2954029 (ß = 0.09 mmol/l per effect allele per decade follow-up, P = 5.1 × 10(-4)) and apolipoprotein A-I (APOA1) rs6589564 (ß = 0.31 mmol/l per effect allele per decade follow-up, P = 1.4 × 10(-8)), remained significantly associated with longitudinal changes for the respective traits after correction for multiple testing. An additional 12 loci were nominally associated with TC or TG changes. In replication analyses, the APOE rs4420638, TRIB1 rs2954029, and APOA1 rs6589564 associations were confirmed (P ≤ 0.001). In summary, trait-specific GRSs are robustly associated with 10-yr changes in lipid levels and three individual SNPs were strongly associated with 10-yr changes in lipid levels.


Asunto(s)
Apolipoproteína A-I/genética , Apolipoproteínas E/genética , Colesterol/sangre , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Triglicéridos/sangre , Anciano , Estudios de Cohortes , Estudios Transversales , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Estilo de Vida , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Estudios Prospectivos , Proteínas Serina-Treonina Quinasas/genética , Encuestas y Cuestionarios , Suecia
9.
Diabetologia ; 59(3): 462-71, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26625858

RESUMEN

AIMS/HYPOTHESIS: We compared the ability of genetic (established type 2 diabetes, fasting glucose, 2 h glucose and obesity variants) and modifiable lifestyle (diet, physical activity, smoking, alcohol and education) risk factors to predict incident type 2 diabetes and obesity in a population-based prospective cohort of 3,444 Swedish adults studied sequentially at baseline and 10 years later. METHODS: Multivariable logistic regression analyses were used to assess the predictive ability of genetic and lifestyle risk factors on incident obesity and type 2 diabetes by calculating the AUC. RESULTS: The predictive accuracy of lifestyle risk factors was similar to that yielded by genetic information for incident type 2 diabetes (AUC 75% and 74%, respectively) and obesity (AUC 68% and 73%, respectively) in models adjusted for age, age(2) and sex. The addition of genetic information to the lifestyle model significantly improved the prediction of type 2 diabetes (AUC 80%; p = 0.0003) and obesity (AUC 79%; p < 0.0001) and resulted in a net reclassification improvement of 58% for type 2 diabetes and 64% for obesity. CONCLUSIONS/INTERPRETATION: These findings illustrate that lifestyle and genetic information separately provide a similarly high degree of long-range predictive accuracy for obesity and type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/etiología , Estilo de Vida , Obesidad/sangre , Obesidad/etiología , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ejercicio Físico/fisiología , Humanos , Modelos Logísticos , Obesidad/metabolismo , Estudios Prospectivos
10.
PLoS Genet ; 9(7): e1003607, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23935507

RESUMEN

Numerous obesity loci have been identified using genome-wide association studies. A UK study indicated that physical activity may attenuate the cumulative effect of 12 of these loci, but replication studies are lacking. Therefore, we tested whether the aggregate effect of these loci is diminished in adults of European ancestry reporting high levels of physical activity. Twelve obesity-susceptibility loci were genotyped or imputed in 111,421 participants. A genetic risk score (GRS) was calculated by summing the BMI-associated alleles of each genetic variant. Physical activity was assessed using self-administered questionnaires. Multiplicative interactions between the GRS and physical activity on BMI were tested in linear and logistic regression models in each cohort, with adjustment for age, age(2), sex, study center (for multicenter studies), and the marginal terms for physical activity and the GRS. These results were combined using meta-analysis weighted by cohort sample size. The meta-analysis yielded a statistically significant GRS × physical activity interaction effect estimate (Pinteraction  = 0.015). However, a statistically significant interaction effect was only apparent in North American cohorts (n = 39,810, Pinteraction  = 0.014 vs. n = 71,611, Pinteraction  = 0.275 for Europeans). In secondary analyses, both the FTO rs1121980 (Pinteraction  = 0.003) and the SEC16B rs10913469 (Pinteraction  = 0.025) variants showed evidence of SNP × physical activity interactions. This meta-analysis of 111,421 individuals provides further support for an interaction between physical activity and a GRS in obesity disposition, although these findings hinge on the inclusion of cohorts from North America, indicating that these results are either population-specific or non-causal.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Actividad Motora/genética , Obesidad/genética , Adulto , Alelos , Índice de Masa Corporal , Femenino , Humanos , Modelos Logísticos , Masculino , Obesidad/epidemiología , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Encuestas y Cuestionarios , Población Blanca/genética
11.
Diabetologia ; 58(5): 997-1005, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25707907

RESUMEN

AIMS/HYPOTHESIS: The association of single nucleotide polymorphisms (SNPs) proximal to CRY2 and MTNR1B with fasting glucose is well established. CRY1/2 and MTNR1B encode proteins that regulate circadian rhythmicity and influence energy metabolism. Here we tested whether season modified the relationship of these loci with blood glucose concentration. METHODS: SNPs rs8192440 (CRY1), rs11605924 (CRY2) and rs10830963 (MTNR1B) were genotyped in a prospective cohort study from northern Sweden (n = 16,499). The number of hours of daylight exposure during the year ranged from 4.5 to 22 h daily. Owing to the non-linear distribution of daylight throughout the year, season was dichotomised based on the vernal and autumnal equinoxes. Effect modification was assessed using linear regression models fitted with a SNP × season interaction term, marginal effect terms and putative confounding variables, with fasting or 2 h glucose concentrations as outcomes. RESULTS: The rs8192440 (CRY1) variant was only associated with fasting glucose among participants (n = 2,318) examined during the light season (ß = -0.04 mmol/l per A allele, 95% CI -0.08, -0.01, p = 0.02, p interaction = 0.01). In addition to the established association with fasting glucose, the rs11605924 (CRY2) and rs10830963 (MTNR1B) loci were associated with 2 h glucose concentrations (ß = 0.07 mmol/l per A allele, 95% CI 0.03, 0.12, p = 0.0008, n = 9,605, and ß = -0.11 mmol/l per G allele, 95% CI -0.15, -0.06, p < 0.0001, n = 9,517, respectively), but only in participants examined during the dark season (p interaction = 0.006 and 0.04, respectively). Repeated measures analyses including data collected 10 years after baseline (n = 3,500) confirmed the results for the CRY1 locus (p interaction = 0.01). CONCLUSIONS/INTERPRETATION: In summary, these observations suggest a biologically plausible season-dependent association between SNPs at CRY1, CRY2 and MTNR1B and glucose homeostasis.


Asunto(s)
Glucemia/genética , Criptocromos/genética , Interacción Gen-Ambiente , Homeostasis/genética , Receptor de Melatonina MT2/genética , Estaciones del Año , Adulto , Alelos , Ritmo Circadiano/genética , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Estudios Prospectivos
12.
Diabetologia ; 57(6): 1132-42, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24695864

RESUMEN

AIMS/HYPOTHESIS: The DIRECT (Diabetes Research on Patient Stratification) Study is part of a European Union Framework 7 Innovative Medicines Initiative project, a joint undertaking between four industry and 21 academic partners throughout Europe. The Consortium aims to discover and validate biomarkers that: (1) predict the rate of glycaemic deterioration before and after type 2 diabetes onset; (2) predict the response to diabetes therapies; and (3) help stratify type 2 diabetes into clearly definable disease subclasses that can be treated more effectively than without stratification. This paper describes two new prospective cohort studies conducted as part of DIRECT. METHODS: Prediabetic participants (target sample size 2,200-2,700) and patients with newly diagnosed type 2 diabetes (target sample size ~1,000) are undergoing detailed metabolic phenotyping at baseline and 18 months and 36 months later. Abdominal, pancreatic and liver fat is assessed using MRI. Insulin secretion and action are assessed using frequently sampled OGTTs in non-diabetic participants, and frequently sampled mixed-meal tolerance tests in patients with type 2 diabetes. Biosamples include venous blood, faeces, urine and nail clippings, which, among other biochemical analyses, will be characterised at genetic, transcriptomic, metabolomic, proteomic and metagenomic levels. Lifestyle is assessed using high-resolution triaxial accelerometry, 24 h diet record, and food habit questionnaires. CONCLUSIONS/INTERPRETATION: DIRECT will yield an unprecedented array of biomaterials and data. This resource, available through managed access to scientists within and outside the Consortium, will facilitate the development of new treatments and therapeutic strategies for the prevention and management of type 2 diabetes.


Asunto(s)
Biomarcadores/sangre , Diabetes Mellitus Tipo 2/sangre , Adulto , Anciano , Glucemia/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Estudios Epidemiológicos , Femenino , Humanos , Hipoglucemiantes/uso terapéutico , Masculino , Persona de Mediana Edad , Embarazo , Estudios Prospectivos
13.
Commun Med (Lond) ; 4(1): 11, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253823

RESUMEN

BACKGROUND: Precision medicine has the potential to improve cardiovascular disease (CVD) risk prediction in individuals with Type 2 diabetes (T2D). METHODS: We conducted a systematic review and meta-analysis of longitudinal studies to identify potentially novel prognostic factors that may improve CVD risk prediction in T2D. Out of 9380 studies identified, 416 studies met inclusion criteria. Outcomes were reported for 321 biomarker studies, 48 genetic marker studies, and 47 risk score/model studies. RESULTS: Out of all evaluated biomarkers, only 13 showed improvement in prediction performance. Results of pooled meta-analyses, non-pooled analyses, and assessments of improvement in prediction performance and risk of bias, yielded the highest predictive utility for N-terminal pro b-type natriuretic peptide (NT-proBNP) (high-evidence), troponin-T (TnT) (moderate-evidence), triglyceride-glucose (TyG) index (moderate-evidence), Genetic Risk Score for Coronary Heart Disease (GRS-CHD) (moderate-evidence); moderate predictive utility for coronary computed tomography angiography (low-evidence), single-photon emission computed tomography (low-evidence), pulse wave velocity (moderate-evidence); and low predictive utility for C-reactive protein (moderate-evidence), coronary artery calcium score (low-evidence), galectin-3 (low-evidence), troponin-I (low-evidence), carotid plaque (low-evidence), and growth differentiation factor-15 (low-evidence). Risk scores showed modest discrimination, with lower performance in populations different from the original development cohort. CONCLUSIONS: Despite high interest in this topic, very few studies conducted rigorous analyses to demonstrate incremental predictive utility beyond established CVD risk factors for T2D. The most promising markers identified were NT-proBNP, TnT, TyG and GRS-CHD, with the highest strength of evidence for NT-proBNP. Further research is needed to determine their clinical utility in risk stratification and management of CVD in T2D.


People living with type 2 diabetes (T2D) are more likely to develop problems with their heart or blood circulation, known as cardiovascular disease (CVD), than people who do not have T2D. However, it can be difficult to predict which people with T2D are most likely to develop CVD. This is because current approaches, such as blood tests, do not identify all people with T2D who are at an increased risk of CVD. In this study we reviewed published papers that investigated the differences between people with T2D who experienced CVD compared to those who did not. We found some indicators that could potentially be used to determine which people with T2D are most likely to develop CVD. More studies are needed to determine how useful these are. However, they could potentially be used to enable clinicians to provide targeted advice and treatment to those people with T2D at most risk of developing CVD.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38686701

RESUMEN

CONTEXT: The role of glucagon-like peptide-1(GLP-1) in Type 2 diabetes (T2D) and obesity is not fully understood. OBJECTIVE: We investigate the association of cardiometabolic, diet and lifestyle parameters on fasting and postprandial GLP-1 in people at risk of, or living with, T2D. METHOD: We analysed cross-sectional data from the two Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohorts, cohort 1(n=2127) individuals at risk of diabetes; cohort 2 (n=789) individuals with new-onset of T2D. RESULTS: Our multiple regression analysis reveals that fasting total GLP-1 is associated with an insulin resistant phenotype and observe a strong independent relationship with male sex, increased adiposity and liver fat particularly in the prediabetes population. In contrast, we showed that incremental GLP-1 decreases with worsening glycaemia, higher adiposity, liver fat, male sex and reduced insulin sensitivity in the prediabetes cohort. Higher fasting total GLP-1 was associated with a low intake of wholegrain, fruit and vegetables inpeople with prediabetes, and with a high intake of red meat and alcohol in people with diabetes. CONCLUSION: These studies provide novel insights into the association between fasting and incremental GLP-1, metabolic traits of diabetes and obesity, and dietary intake and raise intriguing questions regarding the relevance of fasting GLP-1 in the pathophysiology T2D.

15.
Curr Diab Rep ; 13(3): 372-80, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23494754

RESUMEN

The cost of treating cardiovascular disease (CVD) and diabetes is enormous and is set to rise in the coming years. Physical inactivity and sedentary behaviors are major risk factors for these diseases and are estimated to account for several million global deaths annually. Lifestyle interventions, particularly those aimed at enhancing physical activity levels, have a substantial favorable impact on diabetes progression in people at high risk of the disease. Although observational studies and small intervention studies suggest that physical activity might also prevent CVD in people with diabetes, this is not supported by the results of larger randomized controlled trials of lifestyle intervention. The purpose of this review is to provide an overview of the published studies focused on the role of physical activity in CVD prevention in persons with diabetes, and to discuss the implications of these studies' findings. Our review identified almost 100 studies published in the past decade relevant to this topic.


Asunto(s)
Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/prevención & control , Ensayos Clínicos como Asunto , Diabetes Mellitus Tipo 2/complicaciones , Ejercicio Físico , Estudios Observacionales como Asunto , Publicaciones , Humanos , Estilo de Vida
16.
Int J Cardiol ; 373: 72-78, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36410544

RESUMEN

BACKGROUND: Type III hyperlipidaemia (T3HL) is characterised by equimolar increases in plasma triglycerides (TG) and cholesterol in <10% of APOE22 carriers conveying high cardiovascular disease (CVD) risk. We investigate the role of a weighted triglyceride-raising polygenic score (TG.PS) precipitating T3HL. METHODS: The TG.PS (restricted to genome-wide significance and weighted by published independent effect estimates) was applied to the Oxford Biobank (OBB, n = 6952) and the UK Biobank (UKB, n = 460,037), to analyse effects on plasma lipid phenotypes. Fasting plasma lipid, lipoprotein biochemistry and NMR lipoprotein profiles were analysed in OBB. CVD prevalence/incidence was examined in UKB. RESULTS: One TG.PS standard-deviation (SD) was associated with 13.0% (95% confidence-interval 12.0-14.0%) greater TG in OBB and 15.2% (15.0-15.4%) in UKB. APOE22 carriers had 19.0% (1.0-39.0%) greater TG in UKB. Males were more susceptible to TG.PS effects (4.0% (2.0-6.0%) greater TG with 1 TG.PS SD in OBB, 1.6% (1.3-1.9%) in UKB) than females. There was no interaction between APOE22 and TG.PS, BMI, sex or age on TG. APOE22 carriers had lower apolipoprotein B (apoB) (OBB; -0.35 (-0.29 to -0.40)g/L, UKB; -0.41 (-0.405 to -0.42)g/L). NMR lipoprotein lipid concentrations were discordant to conventional biochemistry in APOE22 carriers. In APOE22 compared with APOE33, CVD was no more prevalent in similarly hypertriglyceridaemic participants (OR 0.97 95%CI 0.76-1.25), but was less prevalent in normolipidaemia (OR 0.81, 95%CI 0.69-0.95); no differences were observed in CVD incidence. CONCLUSIONS: TG.PS confers an additive risk for developing T3HL, that is of comparable effect size to conventional risk factors. The protective effect of APOE22 for prevalent CVD is consistent with lower apoB in APOE22 carriers.


Asunto(s)
Enfermedades Cardiovasculares , Hiperlipidemias , Masculino , Femenino , Humanos , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Hiperlipidemias/diagnóstico , Hiperlipidemias/epidemiología , Hiperlipidemias/genética , Bancos de Muestras Biológicas , Colesterol , Lipoproteínas , Triglicéridos , Apolipoproteínas B , Estudios Epidemiológicos , Reino Unido/epidemiología
17.
medRxiv ; 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37162891

RESUMEN

Background Precision medicine has the potential to improve cardiovascular disease (CVD) risk prediction in individuals with type 2 diabetes (T2D). Methods We conducted a systematic review and meta-analysis of longitudinal studies to identify potentially novel prognostic factors that may improve CVD risk prediction in T2D. Out of 9380 studies identified, 416 studies met inclusion criteria. Outcomes were reported for 321 biomarker studies, 48 genetic marker studies, and 47 risk score/model studies. Results Out of all evaluated biomarkers, only 13 showed improvement in prediction performance. Results of pooled meta-analyses, non-pooled analyses, and assessments of improvement in prediction performance and risk of bias, yielded the highest predictive utility for N-terminal pro b-type natriuretic peptide (NT-proBNP) (high-evidence), troponin-T (TnT) (moderate-evidence), triglyceride-glucose (TyG) index (moderate-evidence), Genetic Risk Score for Coronary Heart Disease (GRS-CHD) (moderate-evidence); moderate predictive utility for coronary computed tomography angiography (low-evidence), single-photon emission computed tomography (low-evidence), pulse wave velocity (moderate-evidence); and low predictive utility for C-reactive protein (moderate-evidence), coronary artery calcium score (low-evidence), galectin-3 (low-evidence), troponin-I (low-evidence), carotid plaque (low-evidence), and growth differentiation factor-15 (low-evidence). Risk scores showed modest discrimination, with lower performance in populations different from the original development cohort. Conclusions Despite high interest in this topic, very few studies conducted rigorous analyses to demonstrate incremental predictive utility beyond established CVD risk factors for T2D. The most promising markers identified were NT-proBNP, TnT, TyG and GRS-CHD, with the highest strength of evidence for NT-proBNP. Further research is needed to determine their clinical utility in risk stratification and management of CVD in T2D.

18.
Nat Commun ; 14(1): 5062, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37604891

RESUMEN

We evaluate the shared genetic regulation of mRNA molecules, proteins and metabolites derived from whole blood from 3029 human donors. We find abundant allelic heterogeneity, where multiple variants regulate a particular molecular phenotype, and pleiotropy, where a single variant associates with multiple molecular phenotypes over multiple genomic regions. The highest proportion of share genetic regulation is detected between gene expression and proteins (66.6%), with a further median shared genetic associations across 49 different tissues of 78.3% and 62.4% between plasma proteins and gene expression. We represent the genetic and molecular associations in networks including 2828 known GWAS variants, showing that GWAS variants are more often connected to gene expression in trans than other molecular phenotypes in the network. Our work provides a roadmap to understanding molecular networks and deriving the underlying mechanism of action of GWAS variants using different molecular phenotypes in an accessible tissue.


Asunto(s)
Genómica , Herencia Multifactorial , Humanos , Fenotipo , ARN Mensajero , Investigadores
19.
Nat Biotechnol ; 41(3): 399-408, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36593394

RESUMEN

The application of multiple omics technologies in biomedical cohorts has the potential to reveal patient-level disease characteristics and individualized response to treatment. However, the scale and heterogeneous nature of multi-modal data makes integration and inference a non-trivial task. We developed a deep-learning-based framework, multi-omics variational autoencoders (MOVE), to integrate such data and applied it to a cohort of 789 people with newly diagnosed type 2 diabetes with deep multi-omics phenotyping from the DIRECT consortium. Using in silico perturbations, we identified drug-omics associations across the multi-modal datasets for the 20 most prevalent drugs given to people with type 2 diabetes with substantially higher sensitivity than univariate statistical tests. From these, we among others, identified novel associations between metformin and the gut microbiota as well as opposite molecular responses for the two statins, simvastatin and atorvastatin. We used the associations to quantify drug-drug similarities, assess the degree of polypharmacy and conclude that drug effects are distributed across the multi-omics modalities.


Asunto(s)
Aprendizaje Profundo , Diabetes Mellitus Tipo 2 , Humanos , Algoritmos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética
20.
Cell Rep Med ; 3(1): 100477, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35106505

RESUMEN

The presentation and underlying pathophysiology of type 2 diabetes (T2D) is complex and heterogeneous. Recent studies attempted to stratify T2D into distinct subgroups using data-driven approaches, but their clinical utility may be limited if categorical representations of complex phenotypes are suboptimal. We apply a soft-clustering (archetype) method to characterize newly diagnosed T2D based on 32 clinical variables. We assign quantitative clustering scores for individuals and investigate the associations with glycemic deterioration, genetic risk scores, circulating omics biomarkers, and phenotypic stability over 36 months. Four archetype profiles represent dysfunction patterns across combinations of T2D etiological processes and correlate with multiple circulating biomarkers. One archetype associated with obesity, insulin resistance, dyslipidemia, and impaired ß cell glucose sensitivity corresponds with the fastest disease progression and highest demand for anti-diabetic treatment. We demonstrate that clinical heterogeneity in T2D can be mapped to heterogeneity in individual etiological processes, providing a potential route to personalized treatments.


Asunto(s)
Diabetes Mellitus Tipo 2/diagnóstico , Adulto , Diabetes Mellitus Tipo 2/genética , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Predisposición Genética a la Enfermedad , Genómica , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA