Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Gene Ther ; 31(3-4): 165-174, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38177343

RESUMEN

Ghrelin is commonly known as the 'hunger hormone' due to its role in stimulating food intake in humans. However, the roles of ghrelin extend beyond regulating hunger. Our aim was to investigate the ability of ghrelin to protect against hydrogen peroxide (H2O2), a reactive oxygen species commonly associated with cardiac injury. An in vitro model of oxidative stress was developed using H2O2 injured H9c2 cells. Despite lentiviral ghrelin overexpression, H9c2 cell viability and mitochondrial function were not protected following H2O2 injury. We found that H9c2 cells lack expression of the preproghrelin cleavage enzyme prohormone convertase 1 (encoded by PCSK1), required to convert ghrelin to its active form. In contrast, we found that primary rat cardiomyocytes do express PCSK1 and were protected from H2O2 injury by lentiviral ghrelin overexpression. In conclusion, we have shown that ghrelin expression can protect primary rat cardiomyocytes against H2O2, though this effect was not observed in other cell types tested.


Asunto(s)
Ghrelina , Peróxido de Hidrógeno , Humanos , Animales , Ratas , Peróxido de Hidrógeno/farmacología , Ghrelina/genética , Ghrelina/metabolismo , Ghrelina/farmacología , Apoptosis , Transducción de Señal , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/farmacología , Miocitos Cardíacos/metabolismo
2.
J Gene Med ; 26(3): e3681, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38484722

RESUMEN

Doxorubicin is a commonly used anti-cancer drug used in treating a variety of malignancies. However, a major adverse effect is cardiotoxicity, which is dose dependent and can be either acute or chronic. Doxorubicin causes injury by DNA damage, the formation of free reactive oxygen radicals and induction of apoptosis. Our aim is to induce expression of the multidrug resistance-associated protein 1 (MRP1) in cardiomyocytes derived from human iPS cells (hiPSC-CM), to determine whether this will allow cells to effectively remove doxorubicin and confer cardioprotection. We generated a lentivirus vector encoding MRP1 (LV.MRP1) and validated its function in HEK293T cells and stem cell-derived cardiomyocytes (hiPSC-CM) by quantitative PCR and western blot analysis. The activity of the overexpressed MRP1 was also tested, by quantifying the amount of fluorescent dye exported from the cell by the transporter. We demonstrated reduced dye sequestration in cells overexpressing MRP1. Finally, we demonstrated that hiPSC-CM transduced with LV.MRP1 were protected against doxorubicin injury. In conclusion, we have shown that we can successfully overexpress MRP1 protein in hiPSC-CM, with functional transporter activity leading to protection against doxorubicin-induced toxicity.


Asunto(s)
Cardiotoxicidad , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Miocitos Cardíacos , Humanos , Cardiotoxicidad/prevención & control , Cardiotoxicidad/metabolismo , Cardiotoxicidad/patología , Células HEK293 , Doxorrubicina/farmacología
3.
Heart Lung Circ ; 32(7): 808-815, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37316436

RESUMEN

Cardioembolic stroke (CS) has emerged as a leading cause of ischaemic stroke (IS); distinguished by thrombi embolising to the brain from cardiac origins; most often from the left atrial appendage (LAA). Contemporary therapeutic options are largely dependent on systemic anticoagulation as a blanket preventative strategy, yet this does not represent a nuanced or personalised solution. Contraindications to systemic anticoagulation create significant unmedicated and high-risk cohorts, leaving these patients at risk of significant morbidity and mortality. Atrial appendage occlusion devices are increasingly used to mitigate stroke risk from thrombi emerging from the LAA in patients ineligible for oral anticoagulants (OACs). Their use, however, is not without risk or significant cost, and does not address the underlying aetiology of thrombosis and CS. Viral vector-based gene therapy has emerged as a novel strategy to target a spectrum of haemostatic disorders, achieving success through the adeno-associated virus (AAV) based therapy of haemophilia. Yet, thrombotic disorders, such as CS, have had limited exploration within the realm of AAV gene therapy approaches-presenting a gap in the literature and an opportunity for further research. Gene therapy has the potential to directly address the cause of CS by localised targeting of the molecular remodelling that serves to promote thrombosis.


Asunto(s)
Apéndice Atrial , Fibrilación Atrial , Isquemia Encefálica , Accidente Cerebrovascular Embólico , Accidente Cerebrovascular , Trombosis , Humanos , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/prevención & control , Accidente Cerebrovascular Embólico/complicaciones , Accidente Cerebrovascular Embólico/tratamiento farmacológico , Anticoagulantes/uso terapéutico , Trombosis/etiología , Resultado del Tratamiento
4.
Heart Lung Circ ; 32(7): 816-824, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37451880

RESUMEN

Globally, adeno-associated virus (AAV) vectors have been increasingly used for clinical gene therapy trials. In Australia, AAV-based gene therapy is available for hereditary diseases such as retinal dystrophy or spinal muscular atrophy 1 (SMA1). Many preclinical studies have used AAV vectors for gene therapy in models of cardiac disease with outcomes of varying translational potential. However, major barriers to effective and safe therapeutic gene delivery to the human heart remain to be overcome. These include tropism, efficient gene transfer, mitigating off-target gene delivery and avoidance of the host immune response. Developing such an enhanced AAV vector for cardiac gene therapy is of great interest to the field of advanced cardiac therapeutics. In this review, we provide an overview of the approaches currently being employed in the search for cardiac cell-specific AAV capsids, ranging from natural AAVs selected as a result of infection and latency in the heart, to the use of cutting-edge molecular techniques to engineer and select AAVs specific for cardiac cells with the use of high-throughput methods.


Asunto(s)
Dependovirus , Técnicas de Transferencia de Gen , Tropismo Viral , Humanos , Dependovirus/fisiología , Vectores Genéticos
5.
Mol Ther ; 21(10): 1823-31, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23817206

RESUMEN

Viral vectors based on adeno-associated virus (AAV) are showing exciting promise in gene therapy trials targeting the adult liver. A major challenge in extending this promise to the pediatric liver is the loss of episomal vector genomes that accompanies hepatocellular proliferation during liver growth. Hence maintenance of sufficient transgene expression will be critical for success in infants and children. We therefore set out to explore the therapeutic efficacy and durability of liver-targeted gene transfer in the challenging context of a neonatal lethal urea cycle defect, using the argininosuccinate synthetase deficient mouse. Lethal neonatal hyperammonemia was prevented by prenatal and early postnatal vector delivery; however, hyperammonemia subsequently recurred limiting survival to no more than 33 days despite vector readministration. Antivector antibodies acquired in milk from vector-exposed dams were subsequently shown to be blocking vector readministration, and were avoided by crossfostering vector-treated pups to vector-naive dams. In the absence of passively acquired antivector antibodies, vector redelivery proved efficacious with mice surviving to adulthood without recurrence of significant hyperammonemia. These data demonstrate the potential of AAV vectors in the developing liver, showing that vector readministration can be used to counter growth-associated loss of transgene expression provided the challenge of antivector humoral immunity is addressed.


Asunto(s)
Argininosuccinato Sintasa/genética , Citrulinemia/terapia , Dependovirus/genética , Terapia Genética/métodos , Vectores Genéticos , Animales , Animales Recién Nacidos , Argininosuccinato Sintasa/deficiencia , Citrulinemia/genética , Citrulinemia/mortalidad , Femenino , Terapias Fetales , Fetoscopía , Células HEK293 , Humanos , Hiperamonemia/etiología , Inmunidad Materno-Adquirida , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos , Embarazo , Transgenes
7.
Biomolecules ; 13(9)2023 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-37759797

RESUMEN

Lentiviral vectors are a robust gene delivery tool for inducing transgene expression in a variety of cells. They are well suited to facilitate the testing of therapeutic candidate genes in vitro, due to relative ease of packaging and ability to transduce dividing and non-dividing cells. Our goal was to identify a gene that could be delivered to the heart to protect against cancer-therapy-induced cardiotoxicity. We sought to generate a lentivirus construct with a ubiquitous CMV promoter driving expression of B-cell lymphocyte/leukemia 2 gene (Bcl-2), a potent anti-apoptotic gene. Contrary to our aim, overexpression of Bcl-2 induced cell death in the producer HEK293T cells, resulting in failure to produce usable vector titre. This was circumvented by exchanging the CMV promoter to the cardiac-specific NCX1 promoter, leading to the successful production of a lentiviral vector which could induce cardioprotective expression of Bcl-2. In conclusion, reduced expression of Bcl-2 driven by a weaker promoter improved vector yield, and led to the production of functional cardioprotective Bcl-2 in primary cardiomyocytes.


Asunto(s)
Cardiotoxicidad , Genes bcl-2 , Vectores Genéticos , Humanos , Células HEK293 , Miocitos Cardíacos , Transgenes , Lentivirus/genética , Vectores Genéticos/genética , Vectores Genéticos/uso terapéutico
8.
Mol Ther Methods Clin Dev ; 30: 459-473, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37674904

RESUMEN

Recombinant adeno-associated viruses (rAAVs) have emerged as one of the most promising gene therapy vectors that have been successfully used in pre-clinical models of heart disease. However, this has not translated well to humans due to species differences in rAAV transduction efficiency. As a result, the search for human cardiotropic capsids is a major contemporary challenge. We used a capsid-shuffled rAAV library to perform directed evolution in human iPSC-derived cardiomyocytes (hiPSC-CMs). Five candidates emerged, with four presenting high sequence identity to AAV6, while a fifth divergent variant was related to AAV3b. Functional analysis of the variants was performed in vitro using hiPSC-CMs, cardiac organoids, human cardiac slices, non-human primate and porcine cardiac slices, as well as mouse heart and liver in vivo. We showed that cell entry was not the best predictor of transgene expression efficiency. The novel variant rAAV.KK04 was the best-performing vector in human-based screening platforms, exceeding the benchmark rAAV6. None of the novel capsids demonstrate a significant transduction of liver in vivo. The range of experimental models used revealed the value of testing for tropism differences under the conditions of human specificity, bona fide, myocardium and cell type of interest.

9.
Mol Ther ; 19(5): 854-9, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21386824

RESUMEN

Urea cycle defects presenting early in life with hyperammonemia remain difficult to treat and commonly necessitate liver transplantation. Gene therapy has the potential to prevent hyperammonemic episodes while awaiting liver transplantation, and possibly also to avert the need for transplantation altogether. Ornithine transcarbamylase (OTC) deficiency, the most prevalent urea cycle disorder, provides an ideal model for the development of liver-targeted gene therapy. While we and others have successfully cured the spf(ash) mouse model of OTC deficiency using adeno-associated virus (AAV) vectors, a major limitation of this model is the presence of residual OTC enzymatic activity which confers a mild phenotype without clinically significant hyperammonemia. To better model severe disease we devised a strategy involving AAV2/8-mediated delivery of a short hairpin RNA (shRNA) to specifically knockdown residual endogenous OTC messenger RNA (mRNA). This strategy proved highly successful with vector-treated mice developing severe hyperammonemia and associated neurological impairment. Using this system, we showed that the dose of an AAV rescue construct encoding the murine OTC (mOTC) cDNA required to prevent hyperammonemia is fivefold lower than that required to control orotic aciduria. This result is favorable for clinical translation as it indicates that the threshold for therapeutic benefit is likely to be lower than indicated by earlier studies.


Asunto(s)
Terapia Genética , Hiperamonemia/genética , Hiperamonemia/terapia , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Ornitina Carbamoiltransferasa/metabolismo , Regiones no Traducidas 3'/genética , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Células HEK293 , Humanos , Hígado/patología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Ornitina Carbamoiltransferasa/genética , Ácido Orótico/análisis , Ácido Orótico/metabolismo , ARN Mensajero/genética , ARN Interferente Pequeño/genética
10.
Viruses ; 14(8)2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893689

RESUMEN

Gene therapy is making significant impact on a modest, yet growing, number of human diseases. Justifiably, the preferred viral vector for clinical use is that based on recombinant adeno-associated virus (rAAV). There is a need to scale up rAAV vector production with the transition from pre-clinical models to human application. Standard production methods based on the adherent cell type (HEK293) are limited in scalability and other methods, such as those based on the baculovirus and non-adherent insect cell (Sf9) system, have been pursued as an alternative to increase rAAV production. In this study, we compare these two production methods for cardiotropic rAAVs. Transduction efficiency for both production methods was assessed in primary cardiomyocytes, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), and in mice following systemic delivery. We found that the rAAV produced by the traditional HEK293 method out-performed vector produced using the baculovirus/Sf9 system in vitro and in vivo. This finding provides a potential caveat for vector function when using the baculovirus/Sf9 production system and underscores the need for thorough assessment of vector performance when using diverse rAAV production methods.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Baculoviridae/genética , Dependovirus/genética , Vectores Genéticos/genética , Células HEK293 , Humanos , Ratones
11.
JACC CardioOncol ; 3(5): 650-662, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34988473

RESUMEN

Anthracyclines are associated with risk of significant dose-dependent cardiotoxicity. Conventional heart failure therapies have neither ameliorated declining cardiac function nor addressed the underlying cause. Gene therapy may confer long-term cardioprotection by rendering the heart resistant to anthracyclines after 1 treatment, although the optimal therapeutic target remains to be elucidated. Recombinant adeno-associated virus is now clinically approved for the treatment of lipoprotein lipase deficiency, spinal muscular atrophy, and hereditary transthyretin amyloidosis. High-throughput methods allow selection of recombinant adeno-associated virus capsids that facilitate efficient gene delivery to specific target cells. Vector safety is enhanced by incorporating cardiac-specific promoters into vector design and localizing delivery to reduce off-target risk. Any cardioprotective transgene may bear a degree of risk as they may play as yet unknown roles, which require careful assessment using clinically relevant models. The innovative technologies outlined here make gene therapy a promising proof of principle, with potential further application to nonanthracycline chemotherapeutics.

12.
Hum Gene Ther ; 30(11): 1385-1394, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31215258

RESUMEN

Metabolic liver diseases are attractive gene therapy targets that necessitate reconstitution of enzymatic activity in functionally complex biochemical pathways. The levels of enzyme activity required in individual hepatocytes and the proportion of the hepatic cell mass that must be gene corrected for therapeutic benefit vary in a disease-dependent manner that is difficult to predict. While empirical evaluation is inevitably required, useful insights can nevertheless be gained from knowledge of disease pathophysiology and theoretical approaches such as mathematical modeling. Urea cycle defects provide an excellent example. Building on a previously described one-compartment model of the urea cycle, we have constructed a two-compartment model that can simulate liver-targeted gene therapy interventions using the computational program Mathematica. The model predicts that therapeutically effective reconstitution of ureagenesis will correlate most strongly with the proportion of the hepatic cell mass transduced rather than the level of enzyme-encoding transgene expression achieved in individual hepatocytes. Importantly, these predictions are supported by experimental data in mice and human genotype/phenotype correlations. The most notable example of the latter is ornithine transcarbamylase deficiency (X-linked) where impairment of ureagenesis in male and female patients is closely simulated by the one- and two-compartment models, respectively. Collectively, these observations support the practical value of mathematical modeling in evaluation of the disease-specific gene transfer challenges posed by complex metabolic phenotypes.


Asunto(s)
Terapia Genética , Modelos Biológicos , Trastornos Innatos del Ciclo de la Urea/genética , Trastornos Innatos del Ciclo de la Urea/terapia , Carbamoil Fosfato/metabolismo , Simulación por Computador , Humanos , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética
13.
J Am Heart Assoc ; 3(4)2014 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-25146703

RESUMEN

BACKGROUND: Quantification of myocardial "area at risk" (AAR) and myocardial infarction (MI) zone is critical for assessing novel therapies targeting myocardial ischemia-reperfusion (IR) injury. Current "gold-standard" methods perfuse the heart with Evan's Blue and stain with triphenyl tetrazolium chloride (TTC), requiring manual slicing and analysis. We aimed to develop and validate a high-resolution 3-dimensional (3D) magnetic resonance imaging (MRI) method for quantifying MI and AAR. METHODS AND RESULTS: Forty-eight hours after IR was induced, rats were anesthetized and gadopentetate dimeglumine was administered intravenously. After 10 minutes, the coronary artery was re-ligated and a solution containing iron oxide microparticles and Evan's Blue was infused (for comparison). Hearts were harvested and transversally sectioned for TTC staining. Ex vivo MR images of slices were acquired on a 9.4-T magnet. T2* data allowed visualization of AAR, with microparticle-associated signal loss in perfused regions. T1 data demonstrated gadolinium retention in infarcted zones. Close correlation (r=0.92 to 0.94; P<0.05) of MRI and Evan's Blue/TTC measures for both AAR and MI was observed when the combined techniques were applied to the same heart slice. However, 3D MRI acquisition and analysis of whole heart reduced intra-observer variability compared to assessment of isolated slices, and allowed automated segmentation and analysis, thus reducing interobserver variation. Anatomical resolution of 81 µm(3) was achieved (versus ≈2 mm with manual slicing). CONCLUSIONS: This novel, yet simple, MRI technique allows precise assessment of infarct and AAR zones. It removes the need for tissue slicing and provides opportunity for 3D digital analysis at high anatomical resolution in a streamlined manner accessible for all laboratories already performing IR experiments.


Asunto(s)
Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Animales , Colorantes , Modelos Animales de Enfermedad , Azul de Evans , Imagenología Tridimensional , Imagen por Resonancia Magnética , Imagen Molecular , Infarto del Miocardio/diagnóstico , Daño por Reperfusión Miocárdica/diagnóstico , Ratas , Sales de Tetrazolio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA