Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 40(1): 317-324, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38103254

RESUMEN

Artificial nanoenzymes based on metal nanoclusters have received great attention for multienzyme activities nowadays. In this work, pepsin-capped copper NCs (Cu-Pep NCs) are used as oxidase, ascorbic acid oxidase (AAO), and peroxidase mimics, and their activities are enhanced by the introduction of imidazole. The oxidase activity increased almost 7.5-fold, while 5-fold and 2-fold increases were observed for the peroxidase and AAO-like activity, respectively. The enhanced radical formation in the presence of imidazole moieties facilitates the enzymatic activity of the Cu-Pep-NCs/Imid system. This work describes the different enzymatic activities of the NCs, paving a new way for artificial nanoenzymes having enhanced activities.


Asunto(s)
Cobre , Nanopartículas del Metal , Oxidorreductasas , Ácido Ascórbico , Peroxidasas , Imidazoles
2.
Langmuir ; 39(46): 16554-16561, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37947385

RESUMEN

Copper-thiolate self-assembly nanostructures are a unique class of nanomaterials because of their interesting properties such as hierarchical structures, luminescence, and large nonlinear optical efficiency. Herein, we synthesized biomolecule cysteine (Cys) and glutathione (GSH) capped sub-100 nm self-assembly nanoparticles (Cu-Cys-GSH NPs) with red fluorescence. The as-synthesized NPs show high emission enhancement in the presence of ethanol, caused by the aggregation-induced emission. We correlated the structure and optical properties of Cu-Cys-GSH NPs by measuring the mass, morphology, and surface charge as well as their two-photon excited fluorescence cross-section (σ2PEPL), two-photon absorption cross-section (σTPA) and first hyperpolarizability (ß) of Cu-Cys-GSH NPs in water and water-ethanol using near-infrared wavelength. We found a high ß value as (77 ± 10) × 10-28 esu (in water) compared to the reference medium water. The estimated values of σ2PEPL and σTPA are found to be (13 ± 2) GM and (1.4 ± 0.2) × 104 GM, respectively. We hope our investigations of linear and nonlinear optical properties of copper-thiolate self-assemblies in water and its solvent-induced aggregates will open up new possibilities in designing self-assembled systems for many applications including sensing, drug delivery, and catalysis.

3.
Phys Chem Chem Phys ; 25(13): 9513-9521, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36939011

RESUMEN

Bimetallic nanoclusters (NCs) have emerged as a new class of luminescent materials for potential applications in sensing, bio-imaging, and light-emitting diodes (LEDs). Here, we have synthesized gold-copper bimetallic nanoclusters (AuCu NCs) using a one-step co-reduction method and tuned the emission wavelength from 520 nm to 620 nm by changing the [Cu2+]/[Au3+] molar ratio. The quantum yield (QY) increases from 6% to 13% upon incorporation of the Cu atom in the Au NCs. MALDI-TOF mass spectrometric analysis reveals that the composition of the Au NCs is Au6(MPA)5, and the bimetallic nanocluster is Au4Cu2(MPA)5, where 3-mercaptopropionic acid (MPA) is used as the capping ligand. Furthermore, we investigated the optimized structures of the as-synthesized NCs using density functional theory (DFT) along with analysis of the preferable adsorption sites using Fukui functions. We report the HOMO-LUMO gap, which is consistent with the experimentally observed red shift in the UV-Vis absorption features of the Au NCs upon copper doping. XPS studies suggest the formation of intermixing of states between the 5d orbitals of Au and the 3d orbitals of Cu in the AuCu NCs after incorporating Cu atoms into the Au NCs, which is corroborated by the DFT calculations on electronic charge transfer from the Cu to the Au atom in the NCs. The coupling between Au(I) and Cu(I) facilitates the formation of a low-lying mixed Au(I)-Cu(I) energy state. This study elaborates on the impact of Cu doping on the excited-state relaxation dynamics of AuCu NCs.

4.
Nanoscale ; 16(36): 16913-16918, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39189333

RESUMEN

In this article, the main focus is to employ a new synthetic strategy to prepare atomically precise Ag nanoclusters (NCs) and unveil the critical role played by the solvents in the excited state dynamics of Ag NCs. The compositional analysis confirms the formula of the nanoclusters as Ag16(PDT)8(PPh3)4 (Ag-PDT NCs). These NCs showed a sharp absorption band at 525 nm and a comparatively broad absorption band at 633 nm. The emission maximum was 630 nm with a quantum yield (QY) of 0.23%. Three-component relaxation dynamics was retrieved from global analysis and described as core relaxation (664 fs), core-to-surface state relaxation (500 ps), and ground state relaxation (>1 ns) for Ag NCs in the DCM solvent. The time constants are slightly higher at 1.25 ps, 624.25 ps, and >1 ns for Ag NCs in the DMF solvent because of the less effective charge separation. The high QY in DMF follows this low charge separation (0.23% vs. 0.63%). The straight-chain dithiol capping agent (with lower electron density than an electron-rich aromatic ring) is mainly responsible for this less effective charge separation. Finding the pivotal role of the solvent in NC chemistry will help to characterize it thoroughly and produce a strategy for precise applications in various fields.

5.
J Phys Chem Lett ; 13(24): 5581-5588, 2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35698791

RESUMEN

Precisely doped metal nanoclusters (NCs) are currently emerging nanomaterials for their unique photophysical properties. Here, we report the influence of single atom doping on the excited state relaxation dynamics of a series of MAg24(2,4-Me2PhS)18n- NCs where M is Ag, Au, Pd, and Pt. The NCs with a group 11 metal (Ag and Au) as central atoms exhibit dual emission at NIR and visible range, whereas it shows only NIR emission for group 10 metal (Pd and Pt) doped NCs. Global target analyses of transient absorption (TA) data reveal the three-state relaxation, i.e., initially excited state (Sn), ligand-centered charge transfer (CT) state (SL), and metal-centered lowest excited state (S1). Apart from the HOMO-LUMO (H-L) energy gap, the electron affinity of the central metal atom and rigidity of the NC structural framework influence the relaxation processes of the NCs. The extensive study into the relaxation dynamics will bestow the single atomic level modulation of photophysical properties.

6.
Nanomaterials (Basel) ; 12(3)2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35159891

RESUMEN

Studies on self-assembly of metal nanoclusters (MNCs) are an emerging field of research owing to their significant optical properties and potential applications in many areas. Fabricating the desired self-assembly structure for specific implementation has always been challenging in nanotechnology. The building blocks organize themselves into a hierarchical structure with a high order of directional control in the self-assembly process. An overview of the recent achievements in the self-assembly chemistry of MNCs is summarized in this review article. Here, we investigate the underlying mechanism for the self-assembly structures, and analysis reveals that van der Waals forces, electrostatic interaction, metallophilic interaction, and amphiphilicity are the crucial parameters. In addition, we discuss the principles of template-mediated interaction and the effect of external stimuli on assembly formation in detail. We also focus on the structural correlation of the assemblies with their photophysical properties. A deep perception of the self-assembly mechanism and the degree of interactions on the excited state dynamics is provided for the future synthesis of customizable MNCs with promising applications.

7.
Nanoscale Adv ; 3(19): 5570-5575, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36133258

RESUMEN

Tailoring the hierarchical self-assembly of metal nanoclusters (NCs) is an emergent area of research owing to their precise structure and flexible surface environment. Herein, the morphological evolution from rods to platelets to ribbon-like structures through self-assembly of Cu7 NCs is dictated by the positional isomerism of the surface capping ligand, dimethylbenzenethiol (DMBT). Besides cuprophilic interaction, the interplay between π-π stacking and agostic interaction (Cu⋯H-C) directs the inter-NC organization into different ordered architectures. The excited-state relaxation dynamics of the red phosphorescent assembled structures has been correlated with their compactness and the degree of bonding interactions present.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA