Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Genes Dev ; 29(11): 1120-35, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26063572

RESUMEN

Dendrites exhibit enormous diversity in form and can differ in size by several orders of magnitude even in a single animal. However, whether neurons with large dendrite arbors have specialized mechanisms to support their growth demands is unknown. To address this question, we conducted a genetic screen for mutations that differentially affected growth in neurons with different-sized dendrite arbors. From this screen, we identified a mutant that selectively affects dendrite growth in neurons with large dendrite arbors without affecting dendrite growth in neurons with small dendrite arbors or the animal overall. This mutant disrupts a putative amino acid transporter, Pathetic (Path), that localizes to the cell surface and endolysosomal compartments in neurons. Although Path is broadly expressed in neurons and nonneuronal cells, mutation of path impinges on nutrient responses and protein homeostasis specifically in neurons with large dendrite arbors but not in other cells. Altogether, our results demonstrate that specialized molecular mechanisms exist to support growth demands in neurons with large dendrite arbors and define Path as a founding member of this growth program.


Asunto(s)
Dendritas/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células Receptoras Sensoriales/citología , Animales , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Homeostasis/genética , Lisosomas/metabolismo , Mutación , Fenómenos Fisiológicos de la Nutrición , Transporte de Proteínas
2.
Nature ; 512(7513): 208-212, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25043021

RESUMEN

During cap-dependent eukaryotic translation initiation, ribosomes scan messenger RNA from the 5' end to the first AUG start codon with favourable sequence context. For many mRNAs this AUG belongs to a short upstream open reading frame (uORF), and translation of the main downstream ORF requires re-initiation, an incompletely understood process. Re-initiation is thought to involve the same factors as standard initiation. It is unknown whether any factors specifically affect translation re-initiation without affecting standard cap-dependent translation. Here we uncover the non-canonical initiation factors density regulated protein (DENR) and multiple copies in T-cell lymphoma-1 (MCT-1; also called MCTS1 in humans) as the first selective regulators of eukaryotic re-initiation. mRNAs containing upstream ORFs with strong Kozak sequences selectively require DENR-MCT-1 for their proper translation, yielding a novel class of mRNAs that can be co-regulated and that is enriched for regulatory proteins such as oncogenic kinases. Collectively, our data reveal that cells have a previously unappreciated translational control system with a key role in supporting proliferation and tissue growth.


Asunto(s)
Proteínas de Drosophila/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Regulación de la Expresión Génica/genética , Biosíntesis de Proteínas/genética , Animales , Proliferación Celular , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Factores Eucarióticos de Iniciación/genética , Sistemas de Lectura Abierta , Transducción de Señal
3.
Mech Dev ; 124(6): 463-75, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17482800

RESUMEN

During Drosophila embryogenesis, the attachment of somatic muscles to epidermal tendon cells requires heterodimeric PS-integrin proteins (alpha- and beta-subunits). The alpha-subunits are expressed complementarily, either tendon cell- or muscle-specific, whereas the beta-integrin subunit is expressed in both tissues. Mutations of beta-integrin cause a severe muscle detachment phenotype, whereas alpha-subunit mutations have weaker or only larval muscle detachment phenotypes. Furthermore, mutations of extracellular matrix (ECM) proteins known to act as integrin binding partners have comparatively weak effects only, suggesting the presence of additional integrin binding ECM proteins required for proper muscle attachment. Here, we report that mutations in the Drosophila gene thrombospondin (tsp) cause embryonic muscle detachment. tsp is specifically expressed in both developing and mature epidermal tendon cells. Its initial expression in segment border cells, the tendon precursors, is under the control of hedgehog-dependent signaling, whereas tsp expression in differentiated tendon cells depends on the transcription factor encoded by stripe. In the absence of tsp activity, no aspect of muscle pattern formation as well as the initial contact between muscle and tendon cells nor muscle-to-muscle attachments are affected. However, when muscle contractions occur during late embryogenesis, muscles detach from the tendon cells. The Tsp protein is localized to the tendon cell ECM where muscles attach. Genetic interaction studies indicate that Tsp specifically interacts with the alphaPS2 integrin and that this interaction is needed to withstand the forces of muscle contractions at the tendon cells.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/embriología , Proteínas de la Matriz Extracelular/metabolismo , Cadenas alfa de Integrinas/metabolismo , Músculos/embriología , Tendones/metabolismo , Trombospondinas/metabolismo , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Células Epidérmicas , Proteínas de la Matriz Extracelular/genética , Contracción Muscular , Músculos/metabolismo , Mutación , Tendones/química , Tendones/citología , Trombospondinas/análisis , Trombospondinas/genética
4.
Anal Biochem ; 369(2): 154-60, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17706584

RESUMEN

Non-CpG methylation occurring in the context of CNG sequences is found in plants at a large number of genomic loci. However, there is still little information available about non-CpG methylation in mammals. Efficient methods that would allow detection of scarcely localized methylated sites in small quantities of DNA are required to elucidate the biological role of non-CpG methylation in both plants and animals. In this study, we tested a new whole genome approach to identify sites of CCWGG methylation (W is A or T), a particular case of CNG methylation, in genomic DNA. This technique is based on digestion of DNAs with methylation-sensitive restriction endonucleases EcoRII-C and AjnI. Short DNAs flanking methylated CCWGG sites (tags) are selectively purified and assembled in tandem arrays of up to nine tags. This allows high-throughput sequencing of tags, identification of flanking regions, and their exact positions in the genome. In this study, we tested specificity and efficiency of the approach.


Asunto(s)
Metilación de ADN , Cartilla de ADN/genética , ADN-Citosina Metilasas/genética , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Genómica/métodos , Animales , Secuencia de Bases , ADN-Citosina Metilasas/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Electroforesis en Gel de Poliacrilamida , Humanos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA