Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Phys Chem Chem Phys ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046427

RESUMEN

The work provides a comprehensive explanation of the nature of chemical bonding through quantum chemical topology for multilayers of AIIIBVI compounds, such as GaSe, InSe, and GaTe, spanning pressures from 0 GPa to 30 GPa. These compounds are subjected to pressure orthogonal to the multilayers. Quantum chemical topological indices indicate that uniaxial pressure induces changes in hybridisation, leading to the disappearance of interlayer van der Waals forces. The distinct nature of the elements within the compounds results in different pressures at which van der Waals interactions disappear, as revealed by non-covalent interaction analysis. The presence or absence of chemical bonding is assessed by quantum topological indices as Espinosa indices, charge density distribution difference, and crystal orbital Hamilton populations. The varying changes in hybridisation, as indicated by topological indices, are corroborated by variations in the population of the electronic projected density of states. Ultimately, the type of chemical bonding is identified through the Espinosa indices in the field of Bader theory. This analysis confirms the existence of shared shell bonds between AIII and BVI atoms in vacuum that goes to an intermediate bond between shared and closed shells called the transition zone with increasing pressure. The implications and importance of this work extend beyond the presented results. It suggests that many other classes of two-dimensional materials may undergo phase transitions under uniaxial stress, leading to the formation of new phases with potentially interesting electronic properties.

2.
Opt Lett ; 44(6): 1355-1358, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30874649

RESUMEN

Multilayered structures of GeTe and Sb2Te3 phase change material, also referred to as interfacial phase change memory (iPCM), provide superior performance for nonvolatile electrical memory technology in which the atomically controlled structure plays an important role in memory operation. Here, we report on terahertz (THz) wave generation measurements. Three- and 20-layer iPCM samples were irradiated with a femtosecond laser, and the generated THz radiation was observed. The emitted THz pulse was found to be always p polarized independent of the polarization of the excitation pulse. Based on the polarization dependence as well as the flip of the THz field from photoexcited Sb2Te3 and Bi2Te3, the THz emission process can be attributed to the surge current flow due to the built-in surface depletion layer formed in p-type semiconducting iPCM materials.

3.
Phys Rev Lett ; 121(16): 165702, 2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30387634

RESUMEN

We have systematically investigated the spatial and temporal dynamics of crystallization that occur in the phase-change material Ge_{2}Sb_{2}Te_{5} upon irradiation with an intense terahertz (THz) pulse. THz-pump-optical-probe spectroscopy revealed that Zener tunneling induces a nonlinear increase in the conductivity of the crystalline phase. This fact causes the large enhancement of electric field associated with the THz pulses only at the edge of the crystallized area. The electric field concentrating in this area causes a temperature increase via Joule heating, which in turn leads to nanometer-scale crystal growth parallel to the field and the formation of filamentary conductive domains across the sample.

4.
Inorg Chem ; 56(14): 7687-7693, 2017 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-28654250

RESUMEN

We demonstrate that pressure-induced amorphization in Ge-Sb-Te alloys across the ferroelectric-paraelectric transition can be represented as a mixture of coherently distorted rhombohedral Ge8Sb2Te11 and randomly distorted cubic Ge4Sb2Te7 and high-temperature Ge8Sb2Te11 phases. While coherent distortion in Ge8Sb2Te11 does not prevent the crystalline state from collapsing into its amorphous counterpart in a similar manner to pure GeTe, the pressure-amorphized Ge8Sb2Te11 phase begins to revert to the crystalline cubic phase at ∼9 GPa in contrast to Ge4Sb2Te7, which remains amorphous under ambient conditions when gradually decompressed from 40 GPa. Moreover, experimentally, it was observed that pressure-induced amorphization in Ge8Sb2Te11 is a temperature-dependent process. Ge8Sb2Te11 transforms into the amorphous phase at ∼27.5 and 25.2 GPa at room temperature and 408 K, respectively, and completely amorphizes at 32 GPa at 408 K, while some crystalline texture could be seen until 38 GPa (the last measurement point) at room temperature. To understand the origins of the temperature dependence of the pressure-induced amorphization process, density functional theory calculations were performed for compositions along the (GeTe)x - (Sb2Te3)1-x tie line under large hydrostatic pressures. The calculated results agreed well with the experimental data.

5.
Sci Technol Adv Mater ; 16(1): 014402, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27877740

RESUMEN

Multiferroics, materials in which both magnetic and electric fields can induce each other, resulting in a magnetoelectric response, have been attracting increasing attention, although the induced magnetic susceptibility and dielectric constant are usually small and have typically been reported for low temperatures. The magnetoelectric response usually depends on d-electrons of transition metals. Here we report that in [(GeTe)2(Sb2Te3) l ] m superlattice films (where l and m are integers) with topological phase transition, strong magnetoelectric response may be induced at temperatures above room temperature when the external fields are applied normal to the film surface. By ab initio computer simulations, it is revealed that the multiferroic properties are induced due to the breaking of spatial inversion symmetry when the p-electrons of Ge atoms change their bonding geometry from octahedral to tetrahedral. Finally, we demonstrate the existence in such structures of spin memory, which paves the way for a future hybrid device combining nonvolatile phase-change memory and magnetic spin memory.

6.
Adv Sci (Weinh) ; 11(9): e2301021, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38133500

RESUMEN

The disorder-to-order (crystallization) process in phase-change materials determines the speed and storage polymorphism of phase-change memory devices. Only by clarifying the fine-structure variation can the devices be insightfully designed, and encode and store information. As essential phase-change parent materials, the crystallized Sb-Te binary system is generally considered to have the cationic/anionic site occupied by Sb/Te atoms. Here, direct atomic identification and simulation demonstrate that the ultrafast crystallization speed of Sb-Te materials is due to the random nature of lattice site occupation by different classes of atoms with the resulting octahedral motifs having high similarity to the amorphous state. It is further proved that after atomic ordering with disordered chemical occupation, chemical ordering takes place, which results in different storage states with different resistance values. These new insights into the complicated route from disorder to order will play an essential role in designing neuromorphic devices with varying polymorphisms.

7.
Materials (Basel) ; 16(23)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38068238

RESUMEN

Ultrathin solid slabs often have properties different from those of the bulk phase. This effect can be observed both in traditional three-dimensional materials and in van der Waals (vdW) solids in the few monolayer limit. In the present work, the band gap variation of the CdTe slabs, induced by their thickness, was studied by the density functional theory (DFT) method for the sphalerite (zinc-blende) phase and for the recently proposed inverted phase. The sphalerite phase has the Te-Cd-Te-Cd atomic plane sequence, while in the inverted phase Cd atoms are sandwiched by Te planes forming vdW blocks with the sequence Te-Cd-Cd-Te. Based on these building blocks, a bulk vdW CdTe crystal was built, whose thermodynamical stability was verified by DFT calculations. Band structures and partial densities of states for sphalerite and inverted phases were calculated. It was demonstrated for both phases that using slabs with a thickness of one to several monolayers for sphalerite phase (vdW blocks for inverted phase), structures with band gaps varying in a wide range can be obtained. The presented results allow us to argue that ultrathin CdTe can be a promising electronic material.

8.
Materials (Basel) ; 16(19)2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37834739

RESUMEN

S- and Se-based chalcogenide glasses are intrinsically metastable and exhibit a number of photo-induced effects unique to this class of materials, reversible photostructural changes and photo-induced anisotropy being major examples. These effects are usually interpreted in terms of the formation of valence alternation pairs and 'wrong' bonds. In this work, using density functional theory simulations, we demonstrate for the case example of As2S3 that a strong decrease in the optical band gap can be achieved if a polymorphic transformation of the local structure from orpiment to that of tetradymite takes place. For the formation of the latter, the presence of lone-pair electrons in near-linear atomic configurations is crucial. Our results represent a novel approach to understanding the photo-induced structural changes in chalcogenide glasses as being due to the presence of polymorphism, and will lead to their wider use in various photonic devices.

9.
Nanomaterials (Basel) ; 13(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903779

RESUMEN

Crystalline transition-metal chalcogenides are the focus of solid state research. At the same time, very little is known about amorphous chalcogenides doped with transition metals. To close this gap, we have studied, using first principle simulations, the effect of doping the typical chalcogenide glass As2S3 with transition metals (Mo, W and V). While the undoped glass is a semiconductor with a density functional theory gap of about 1 eV, doping results in the formation of a finite density of states (semiconductor-to-metal transformation) at the Fermi level accompanied by an appearance of magnetic properties, the magnetic character depending on the nature of the dopant. Whilst the magnetic response is mainly associated with d-orbitals of the transition metal dopants, partial densities of spin-up and spin-down states associated with arsenic and sulphur also become slightly asymmetric. Our results demonstrate that chalcogenide glasses doped with transition metals may become a technologically important material.

10.
Sci Rep ; 11(1): 4782, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686108

RESUMEN

Two-dimensional (2D) van der Waals (vdW) materials possess a crystal structure in which a covalently-bonded few atomic-layer motif forms a single unit with individual motifs being weakly bound to each other by vdW forces. Cr2Ge2Te6 is known as a 2D vdW ferromagnetic insulator as well as a potential phase change material for non-volatile memory applications. Here, we provide evidence for a dimensional transformation in the chemical bonding from a randomly bonded three-dimensional (3D) disordered amorphous phase to a 2D bonded vdW crystalline phase. A counterintuitive metastable "quasi-layered" state during crystallization that exhibits both "long-range order and short-range disorder" with respect to atomic alignment clearly distinguishes the system from conventional materials. This unusual behavior is thought to originate from the 2D nature of the crystalline phase. These observations provide insight into the crystallization mechanism of layered materials in general, and consequently, will be useful for the realization of 2D vdW material-based functional nanoelectronic device applications.

11.
ACS Appl Mater Interfaces ; 11(46): 43320-43329, 2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31647631

RESUMEN

Cr2Ge2Te6 (CrGT) is a phase change material with higher resistivity in the crystalline phase than in the amorphous phase. CrGT exhibits an ultralow operation energy for amorphization. In this study, the origin of the increased resistance in crystalline CrGT compared to amorphous CrGT and the underlying phase change mechanism were investigated in terms of both local structural change and associated change in electronic state. The density of states at the Fermi level in crystalline CrGT decreased with increasing annealing temperature and became negligible upon annealing at 380 °C. Simultaneously, the Fermi level shifted from the vicinity of the valence band to the band gap center, leading to an increase in resistance. The phase change from amorphous to crystalline CrGT occurred through a metastable crystalline phase with a local structure similar to that of the amorphous phase. Cr nanoclusters were confirmed to exist in both the amorphous and crystalline phases. The presence of Cr nanoclusters induced Cr vacancies in the crystalline phase. These Cr vacancies generated hole carriers, leading to p-type conduction. Photoelectron spectroscopy of the Cr 2s core level clearly indicated a decrease in the fraction of Cr-Cr bonds and an increase in the fraction of Cr-Te bonds in crystalline CrGT upon annealing. Meanwhile, the coordination number of the Cr nanoclusters decreased as the number of Cr-Cr bonds was reduced. Together, these results imply that the origin of the increased resistance in crystalline CrGT is the filling of Cr vacancies by Cr atoms diffusing from Cr nanoclusters.

12.
J Phys Condens Matter ; 31(41): 415502, 2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31265998

RESUMEN

We report on pump-probe based helicity dependent time-resolved Kerr measurements under infrared excitation of chalcogenide superlattices, consisting of alternately stacked GeTe and Sb2Te3 layers. The Kerr rotation signal consists of the specular inverse Faraday effect (SIFE) and the specular optical Kerr effect (SOKE), both of which are found to monotonically increase with decreasing photon energy over a sub-eV energy range. Although the dependence of the SIFE can be attributed to the response function of direct third-order nonlinear susceptibility, the magnitude of the SOKE reflects cascading second-order nonlinear susceptibility resulting from electronic transitions between bulk valence/conduction bands and interface-originating Dirac states of the superlattice.

13.
Sci Rep ; 8(1): 3908, 2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29500471

RESUMEN

Topological insulators (TIs) are characterized by possessing metallic (gapless) surface states and a finite band-gap state in the bulk. As the thickness of a TI layer decreases down to a few nanometers, hybridization between the top and bottom surfaces takes place due to quantum tunneling, consequently at a critical thickness a crossover from a 3D-TI to a 2D insulator occurs. Although such a crossover is generally accessible by scanning tunneling microscopy, or by angle-resolved photoemission spectroscopy, such measurements require clean surfaces. Here, we demonstrate that a cascading nonlinear magneto-optical effect induced via strong spin-orbit coupling can examine such crossovers. The helicity dependence of the time-resolved Kerr rotation exhibits a robust change in periodicity at a critical thickness, from which it is possible to predict the formation of a Dirac cone in a film several quintuple layers thick. This method enables prediction of a Dirac cone using a fundamental nonlinear optical effect that can be applied to a wide range of TIs and related 2D materials.

14.
ACS Appl Mater Interfaces ; 10(31): 26781-26786, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30019581

RESUMEN

Chalcogenide superlattices (SLs), formed by the alternate stacking of GeTe and Sb2Te3 layers, also referred to as interfacial phase-change memory (iPCM), are a leading candidate for spin-based memory device applications. Theoretically, the iPCM structure has been predicted to form a three-dimensional topological insulator or Dirac semimetal phase depending on the constituent layer thicknesses. Here, we experimentally investigate the topological insulating nature of chalcogenide SLs using a helicity-dependent time-resolved Kerr measurement. The helicity-dependent Kerr signal is observed to exhibit a four-cycle oscillation with π/2 periodicity, suggesting the existence of a Dirac-like cone in some chalcogenide SLs. Furthermore, we found that increasing the thickness of the GeTe layer dramatically changed the periodicity, indicating a phase transition from a Dirac semimetal into a trivial insulator. Our results demonstrate that thickness-tuned chalcogenide SLs can play an important role in the manipulation of topological states, which may open up new possibilities for spintronic devices based on chalcogenide SLs.

15.
ACS Omega ; 2(9): 6223-6232, 2017 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31457867

RESUMEN

Nonvolatile memory, of which phase-change memory (PCM) is a leading technology, is currently a key element of various electronics and portable systems. An important step in the development of conceptually new devices is the class of van der Waals (vdW)-bonded GeTe/Sb2Te3 superlattices (SLs). With their order of magnitude faster switching rates and lower energy consumption compared to those of alloy-based devices, they are widely regarded as the next step in the implementation of PCM. In contrast to conventional PCM, where the SET and RESET states arise from the crystalline and amorphous phases, in SLs, both the SET and RESET states remain crystalline. In an earlier work, the superior performance of SLs was attributed to the reduction of entropic losses associated with the one-dimensional motion of interfacial Ge atoms located in the vicinity of Sb2Te3 quintuple layers. Subsequent experimental studies using transmission electron microscopy revealed that GeTe and Sb2Te3 blocks strongly intermix during the growth of the GeTe phase, challenging the original proposal but at the same time raising new fundamental issues. In this work, we propose a new approach to switching in SLs associated with the reconfiguration of vdW gaps accompanied by local deviation of stoichiometry from the GeTe/Sb2Te3 quasibinary alloys. The model resolves in a natural way the existing controversies, explains the large conductivity contrast between the SET and RESET crystalline states, is not compromised by Ge/Sb intermixing, and provides a new perspective for the industrial development of memory devices based on such SLs. The proposed concept of vdW gap reconfiguration may also be applicable to designing a broad variety of engineered two-dimensional vdW solids.

16.
ACS Appl Mater Interfaces ; 9(28): 23918-23925, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28649834

RESUMEN

The bulk band structures of a variety of artificially constructed van der Waals chalcogenide heterostructures IVTe/V2VI3 (IV: C, Si, Ge, Sn, Pb; V: As, Sb, Bi; VI: S, Se, Te) have been systematically examined using ab initio simulations based on density functional theory. The crystal structure and the electronic band structure of the heterostructures were found to strongly depend on the choice of elements as well as the presence of van der Waals corrections. Furthermore, it was found that the use of the modified Becke-Johnson local density approximation functional demonstrated that a Dirac cone is formed when tensile stress is applied to a GeTe/Sb2Te3 heterostructure, and the band gap can be controlled by tuning the stress. Based on these simulation results, a novel electrical switching device using a chalcogenide heterostructure is proposed.

17.
Nanoscale ; 9(39): 15115-15121, 2017 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-28972624

RESUMEN

Growth of Bi-Te films by helicon-wave magnetron sputtering is systematically explored using alloy targets. The film compositions obtained are found to strongly depend on both the sputtering and antenna-coil powers. The obtainable film compositions range from Bi55Te45 to Bi43Te57 when a Bi2Te3 alloy target is used, and from Bi42Te58 to Bi40Te60 (Bi2Te3) for a Te-rich Bi30Te70 target. All films show strong orientation of the van der Waals layers (00l planes) parallel to the substrate. The atomic level stacking of Bi2Te3 quintuple and Bi bi-layers has been directly observed by high resolution transmission electron microscopy. Band structure simulations reveal that Bi-rich Bi4Te3 bulk is a zero band gap semimetal with a Dirac cone at the Gamma point when spin-orbit coupling is included. Optical measurements also confirm that the material has a zero band gap. The tunability of the composition and the topological insulating properties of the layers will enable the use of these materials for future electronics applications on an industrial scale.

18.
Sci Rep ; 6: 19758, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26805401

RESUMEN

Optical excitation of matter with linearly-polarized femtosecond pulses creates a transient non-equilibrium lattice displacement along a certain direction. Here, the pump and probe pulse polarization dependence of the photo-induced ultrafast lattice dynamics in (GeTe)2/(Sb2Te3)4 interfacial phase change memory material is investigated under obliquely incident conditions. Drastic pump polarization dependence of the coherent phonon amplitude is observed when the probe polarization angle is parallel to the c-axis of the sample, while the pump polarization dependence is negligible when the probe polarization angle is perpendicular to the c-axis. The enhancement of phonon oscillation amplitude due to pump polarization rotation for a specific probe polarization angle is only found in the early time stage (≤2 ps). These results indicate that the origin of the pump and probe polarization dependence is dominantly attributable to the anisotropically-formed photo-excited carriers which cause the directional lattice dynamics.

19.
Sci Rep ; 6: 20633, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26868451

RESUMEN

Phase-change materials based on Ge-Sb-Te alloys are widely used in industrial applications such as nonvolatile memories, but reaction pathways for crystalline-to-amorphous phase-change on picosecond timescales remain unknown. Femtosecond laser excitation and an ultrashort x-ray probe is used to show the temporal separation of electronic and thermal effects in a long-lived (>100 ps) transient metastable state of Ge2Sb2Te5 with muted interatomic interaction induced by a weakening of resonant bonding. Due to a specific electronic state, the lattice undergoes a reversible nondestructive modification over a nanoscale region, remaining cold for 4 ps. An independent time-resolved x-ray absorption fine structure experiment confirms the existence of an intermediate state with disordered bonds. This newly unveiled effect allows the utilization of non-thermal ultra-fast pathways enabling artificial manipulation of the switching process, ultimately leading to a redefined speed limit, and improved energy efficiency and reliability of phase-change memory technologies.

20.
J Phys Condens Matter ; 27(48): 485402, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26570991

RESUMEN

Using ≈40 fs ultrashort laser pulses, we investigate the picosecond acoustic response from a prototypical phase change material, thin Ge2Sb2Te5 (GST) films with various thicknesses. After excitation with a 1.53 eV-energy pulse with a fluence of ≈5 mJ cm(-2), the time-resolved reflectivity change exhibits transient electronic response, followed by a combination of exponential-like strain and coherent acoustic phonons in the gigahertz (GHz) frequency range. The time-domain shape of the coherent acoustic pulse is well reproduced by the use of the strain model by Thomsen et al 1986 (Phys. Rev. B 34 4129). We found that the decay rate (the inverse of the relaxation time) of the acoustic phonon both in the amorphous and in the crystalline phases decreases as the film thickness increases. The thickness dependence of the acoustic phonon decay is well modeled based on both phonon-defect scattering and acoustic phonon attenuation at the GST/Si interface, and it is revealed that those scattering and attenuation are larger in crystalline GST films than those in amorphous GST films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA